Skip to main content

Pedagogical Anthropology: The Volume of the Cranium

Pedagogical Anthropology
The Volume of the Cranium
  • Show the following:

    Annotations
    Resources
  • Adjust appearance:

    Font
    Font style
    Color Scheme
    Light
    Dark
    Annotation contrast
    Low
    High
    Margins
  • Search within:
    • Notifications
    • Privacy
  • Project HomeThe Montessori Method
  • Projects
  • Learn more about Manifold

Notes

table of contents
  1. PEDAGOGICAL ANTHROPOLOGY
  2. PREFACE
  3. CONTENTS
  4. INTRODUCTION THE MODERN TENDENCIES OF ANTHROPOLOGY AND THE RELATION THAT THEY BEAR TO PEDAGOGY
    1. Human Hygiene
    2. The Method
    3. The Method to be Followed in These Lectures
    4. The Limits of Pedagogical Anthropology
    5. FOOTNOTES:
  5. CHAPTER I CERTAIN PRINCIPLES OF GENERAL BIOLOGY
    1. The Material Substratum of Life The Synthetic Concept of the Individual in Biology
    2. The Formation of Multicellular Organisms
    3. Form and Types of Stature
    4. Canons of Form
    5. Abnormal Types of Stature and General Principles of Biological Ethics
    6. Abnormal Types According to De Giovanni's Theory
    7. Types of Stature in Criminals
    8. Types of Non-violent Criminals (Parasites)
    9. Types of Violent Criminals (Assault, Mayhem, Homicide)
    10. Extreme or Infantile Types, Nanism and Gigantism, Extra-social Types
    11. Summary of the Types of Stature
    12. Summary of the Scientific Principles Illustrated in the Course of our Discussion
    13. The Stature
    14. Variations in Stature Through the Different Ages
    15. Variations in Stature due to Mechanical Causes of Adaptation to Environment
    16. Variations Due to Adaptation in Connection with Causes of Various Kinds—Social, Physiological, Physical, Psychic, Pathological, Etc.
    17. Physical Conditions—Heat, Light, Electricity
    18. Summary of Stature
    19. Summary of the Scientific Principles Illustrated in The Course of the Exposition of Our Subject
    20. Weight
    21. FOOTNOTES:
  6. CHAPTER II CRANIOLOGY
    1. Head and Cranium
    2. Normal Forms of the Cranium
    3. The Cephalic Index
    4. The Volume of the Cranium
    5. Face and Visage
    6. The Normal Visage
    7. The Neck
    8. FOOTNOTES:
  7. CHAPTER III THE THORAX
  8. CHAPTER IV THE PELVIS
  9. CHAPTER V THE LIMBS
    1. The Hand
    2. FOOTNOTES:
  10. CHAPTER VI THE SKIN AND THE PIGMENTS
    1. Morphological Analysis of Certain Organs (Stigmata)
    2. Distribution of Malformations
    3. FOOTNOTES:
  11. CHAPTER VII TECHNICAL PART
    1. The Form
    2. The Cranium
    3. Measurements of the Thorax
    4. The Personal Error
  12. CHAPTER VIII STATISTICAL METHODOLOGY
  13. CHAPTER IX BIOGRAPHICAL HISTORY OF THE PUPIL AND HIS ANTECEDENTS
    1. Summary of the Biographic History of an Idiot Boy
    2. Diaries
  14. CHAPTER X THE APPLICATION OF BIOMETRY TO ANTHROPOLOGY FOR THE PURPOSE OF DETERMINING THE MEDIAL MEN
    1. FOOTNOTES:
  15. TABLES SUMMARIZING
    1. The Mean Proportions of the Body According To Age
  16. TABLES OF CALCULATIONS
    1. I Tables For Calculating the Cephalic Index
    2. II Tables For Calculating the Ponderal Index
  17. INDEX
    1. (A.—Names)
    2. (B.—Subjects)
  18. THE FULL PROJECT GUTENBERG LICENSE

Since it has been observed that the cranium in the course of its growth may assume forms, amounting even to apparent malformations (due chiefly to "bumps," either symmetrical or asymmetrical), which disappear during the evolution of the individual, the cephalic index, for the very reason that it does not represent a faithful description of the form, gives us precious aid in judging the cranium of the child, because it accurately determines the proportions between length and breadth which are destined to persist even in the adult, and hence serve to give, even in infancy, a sure indication of the ethnic type to which the child belongs.

Per cent.

  • Negro Children
  • Children born in Syria
  • Children born in Russia
  • Children born in Germany
  • Children born in Ireland
  • White Children born in America
  • Children born in Italy

Fig. 74.

We owe to Dr. Ales Hrdlicka the extremely important graphic chart, which I will proceed to summarise, of the cephalic indices of children of various races: the central dotted line corresponds to the index 80: consequently the brachycephalics are indicated on the right, and the dolichocephalics on the left (Fig. 74).

In the case of Italy, the graphic line extends between the two extreme figures of 70 and 90, which are precisely the extreme limits that we have already noted for individual adults, in the case of the women of Latium: moreover, the curve is perceptibly symmetrical, although the brachycephalics are in the majority; a fact already established by Livi's mean averages. One might say that this curve was a graphic representation of Livi's two-colour method in his map of the cephalic index: one-half of Italy is brachycephalic and the other half is dolichocephalic; but since brachycephaly prevails in the northern half, a wider extent of territory is occupied by brachycephalics.

In America, where emigration brings every variety of humanity, the curve is even more symmetrical, and rests on a broader basis, representing widely separated extremes. Ireland also shows a very perceptible symmetry, the population being a mixture of Celts (brachycephalics) and of Scotch (northern blond dolichocephalics).

In Germany there is a prevalence of brachycephalics; we are here approaching the eastern regions from which the Eurasian race came through emigration. Here the Slavs and Celts (brachycephalics who immigrated into Europe at various epochs) are intermingled with a notable percentage of dolichocephalics (Teutons).

But in Russia, a region still further east, and similarly in Syria, we find an almost pure race: the curves lie wholly within the field of brachycephaly.

On the contrary, the dark-skinned children given in the last chart, and belonging to African races and tribes of American Indians, are all of them dolichocephalic.

According to Binet and other writers, the cephalic index and the cranial volume are the two anthropological data on which the criterion of normality of children's heads must be based.

When we observe a child's head which is apparently malformed, we cannot call it abnormal; it is not abnormal unless it has a volume notably too small (submicrocephaly, microcephaly) or too large (rickets, hydrocephaly); and a cephalic index exceeding the normal limits, in other words, exaggerated (scaphocephaly, trochocephaly, pathological brachycephaly occurring in hydrocephalics).

The Volume of the Cranium

The volume of the cranium owes its importance, as we have already seen, to the fact that the cranium represents the envelope of the brain, and is consequently normally determined, as regards its dimensions, by the cerebral volume. Accordingly, in normal cases, when we speak of the cranial volume, we are speaking by implication of the cerebral volume; and all anthropological questions regarding the volumetric development of the cranium in reality have reference to the brain.

In abnormal cases, on the contrary, it may happen that the bony covering is not a skeletal index of the brain; in fact, pathological cases may occur analogous to those we have already observed in discussing the etiology of cranial malformations, in which the flat bones of the cranial vault undergo a notable thickening, so that as a result the greater volume of the cranium is due to the increased quantity of bony substance, and not of brain tissue, and is very heavy, so that it readily droops over upon the shoulder: pachycephalic cranium.

Another cause for lack of correspondence between the cerebral and the cranial volume may be the abnormal production of cerebro-spinal fluid within the brain: hydrocephalic cranium.

The Development of the Brain.—In the earliest period of embryonal life, the brain consists of a single vesicle, the continuation of which forms the spinal marrow: later on, this vesicle divides into three superimposed vesicles which represent respectively the embryonal beginnings of the anterior, middle and posterior brain; continuing their development, the anterior and posterior brains each divide in turn into two other vesicles, so that there result in all five primitive vesicles of the brain, superimposed one upon another (see Fig. 75); the anterior vesicle which is destined to grow enormously, dividing into two parts, right and left, with a longitudinal division, will constitute the cerebral hemispheres; the second vesicle will constitute the optic thalami; the third vesicle, the corpora quadrigemina; the fourth vesicle, the cerebellum, and the fifth vesicle, the medulla oblongata.

When complete development is attained, the cerebral hemispheres completely cover the other parts of the brain, besides which they themselves are covered over with a multiplicity of folds constituting the convolutions. If we take a cross-section of the hemispheres, we find that they consist of an outer layer of gray matter formed of nerve cells, and of a central mass of white matter, formed of fibres.

Fig. 75. Brain of a Human Embryo after the Fourth Week.

The study of the convolutions is quite important from the anthropological standpoint, because their number is not identical in the different branches of the human race, and also because they differ both in number and in arrangement from the convolutions in the brain of the anthropoid apes. But however interesting they may be, considered as differentiating characteristics, we cannot linger over a study of this kind, which has a purely theoretic importance, and for the present cannot be applied in any practical and direct way to our problems of pedagogic anthropology. It will be sufficient to note rapidly that at the present time the study of the convolutions has received a new impulse through the labours of certain distinguished investigators, among whom we must once more include Dr. Sergio Sergi. Instead of studying the surface convolutions, Dr. Sergi studies the internal folds which are disclosed by separating the lips of the cerebral fissures; and from these he draws deductions which to a large extent correct those made by previous scientists, in regard to the eventual ancestry of the different species, the marks of biological superiority or inferiority, the differences in the brain due to sex, etc.

The surface fissures which divide the cerebral hemispheres into convolutions are shown in the two accompanying figures (Figs. 76 and 77), the first of which shows the outer side of the hemispheres, and the second the inner side.

Of chief importance to us is the arrangement of convolutions and furrows on the outer surface of the hemispheres.

The points to be noted are the following: the two great fissures, Rolando's, running longitudinally, and Silvius's running transversely, which, together with the perpendicular fissure, divide the hemisphere into four lobes: the frontal lobe and the parietal lobe, situated respectively in front and behind Rolando's fissure; the temporal lobe, situated below Silvius's fissure, and lastly, the occipital lobe at the posterior apex of the hemisphere.

Fig. 76.—Cerebral hemisphere; external face.

In the third frontal convolution are situated Broca's centres, which are believed to be the seat of articulate speech; while along Rolando's fissure, in the ascendant convolutions, is the locality designated by physiologists as the motor centres.

The occipital lobe is the location of the zone of sight; and the temporal lobe, that of hearing.

It is important for us to observe the volume of the brain, and therefore that of the head, in relation to the rest of the body; it is enormous in the embryo; and even at birth and during childhood the head is quite voluminous as compared with the body, as appears from the diagram in Fig. 16, in which a new-born child and an adult man are reduced to the same scale, each retaining his relative bodily proportions. In Fig. 22 a new-born child is shown in two positions: from the front and from behind; the head is very large and the cranial nodules are plainly visible. Figs. 80 and 81 represent the same child at the age of six months and a year and a half; in the first picture the head is still very large as compared with the body, and the forehead protrudes (infantile forehead); in the second, the proportion between head and body has already altered.

A knowledge of the laws governing the growth of the brain is of particular importance in relation to pedagogic anthropology.

Fig. 77.—Cerebral hemisphere, internal face.

Within the last few years anthropologists have established certain principles that are well worthy of notice:

  1. The child's head is normal when its volume and cephalic index come within the limits of normality (even if the shape appears abnormal: Simon, Binet, etc.).
  2. When the volume of the head is too small it frequently indicates psychic deficiency; when it is too large, even up to the age of twenty years, it indicates a predisposition to precocious mortality (see below).

Very frequently when the size of the head is larger than normal and is not due to pathological causes (rickets, hydrocephaly, etc.), it is associated with an excessive development of the brain, and also with an intellectual precocity. A high percentage of this type die before reaching the age of twenty years; and this fact confirms the popular belief that children who are too intelligent or too good cannot live long.

This indication alone ought to be sufficient to prove the pedagogic importance of the cerebral volume.

The researches made by various authors in regard to the growth of the brain are not rigorously in accord as to the limits of volume: but they do agree as to the rhythm of growth.

Welcker gives the following figures:

WEIGHT OF THE BRAIN IN GRAMS
(According to Welcker)

AgeMalesFemales
At birth400360
Two months540510
One year900850
Three years1,0801,010
Ten years1,3601,250

Accordingly, the weight of the brain is doubled before the end of the first year; according to Massini it is very nearly doubled at the end of the first six months:

MASSINI'S FIGURES AS TO THE WEIGHT OF THE BRAIN

AgeTotal weightIncrease
At birth35268 279
First month420211
From first to third month631
From third to sixth month67544 63
From sixth month to 1 year69419

Fig. 78.—Spheroidal cranium lateral norm (Sergi's collection).

Fig. 79.—Spheroids typicus (from Sergi's collection).

Fig. 80.—A child six months old.

Fig. 81.—The same child a year and a half old.

It follows from these figures that by the end of the sixth month the weight of the brain is already very nearly doubled; but the maximum growth takes place between the ages of one month and three, after which it shows a notable diminution of rate.

But while the weight of the whole body is increased threefold by the end of the first year, that of the brain is very far from being tripled, since the rate of growth is still further diminished during the second six months; in fact even according to Welcker the weight at the end of the first year has little more than doubled.

Accordingly the rhythm of cerebral growth is not identical with that of the increase in weight of the body taken as a whole.

According to Massini, the relation between the cerebral weight and the weight of the body, at the various successive ages, is as follows:

RELATION BETWEEN WEIGHT OF BRAIN AND TOTAL WEIGHT
(According to Massini)

AgeBrainBodyAgeBrainBody
At birth182 years115
First month193 years114
From first to third month19
to sixth month110
one year11225 years140

In other words, the body grows more rapidly than the brain, and consequently, than the head: a fact which results in the different proportions already noted between head and body.

The rhythm of brain growth considered by itself has been set forth in a most noteworthy and accurate fashion by Boyd, based on the study of about two thousand cases; from the figures given by Boyd, I have calculated the amount of increase from period to period, as well as from year to year, the whole result being set forth in the following table:

RHYTHM OF GROWTH OF BRAIN
(Males: According to Boyd)

AgeWeight in gramsDifference for each periodDifference for each yearRelative epochProportion to maximum reduced to 100
At birth331———24.2
From birth to 3 months493+162——36.0
From 3 to 6 months603+110——44.1
From 6 months to 1 year777+174+4461st year56.8
From 1 to 2 years942+165+1652d year69.0
From 2 to 4 years1,097+155+772d- 4th80.4
From 4 to 7 years1,140+43+144th- 7th83.4
From 7 to 14 years1,302+162+237th-14th95.3
From 14 to 20 years1,374+72+1214th-20th100.5
From 20 to 30 years1,357———99.3
From 30 to 40 years1,366+9+0.930th-40th99.3
From 40 to 50 years1,352-14-1.440th-50th98.9
From 50 to 60 years1,343-9-0.950th-60th98.3
From 60 to 70 years1,315-28-2.860th-70th96.9
From 70 to 80 years1,289-26-2.670th-80th95.3
From 80 to 90 years1,284-5-0.580th-90th94.2

In the above table, the first column of figures gives the mean average weight of the brain, obtained by direct observation of individual subjects; while from all the others the rhythm of cerebral growth and involution throughout the successive periods of life may be computed.

We see that the maximum growth takes place in the first years of life, the intensity is greater in the first year than in the second, and greater in the first three months than in those that follow. Already at the end of the first year the brain has surpassed one-half of the maximum weight which the individual is destined to attain in adult life (last column: proportions computed on scale of 100). A notable rate of increase continues up to the age of four, after which it moderates, but receives a new impulse at about the fourteenth year (period of puberty); hence it appears that at this important epoch of life the brain not only shares the general rapid growth of the body, but that by the end of the fourteenth year the brain has already practically completed its development; in fact, assuming that 100 represents its complete development, the weight of the brain is already 95.3; and at thirty it will be only 99.3.

By studying the above table we can obtain a clear analysis of these phenomena.

For women, Boyd gives the following figures:

THE GROWTH OF THE BRAIN IN WOMEN
(Figures Given by Boyd)

AgeWeightProportion to the maximum reduced to 100
At birth28322.8
Three months45236.5
From 3 to 6 months56045.2
From 6 months to 1 year72858.8
From 1 to 2 years84468.1
From 2 to 4 years99180.8
From 4 to 7 years1,13691.7
From 7 to 14 years1,15593.3
From 14 to 20 years1,244100.4
From 20 to 30 years1,238100.0
From 30 to 40 years1,21898.3
From 40 to 50 years1,21397.9
From 50 to 60 years1,22198.2
From 60 to 70 years1,20797.4
From 70 to 80 years1,16794.2
From 80 to 90 years1,12590.8

The rhythm of growth of the female brain is analogous to that of the male, except for the more precocious attainment of the maximum weight, which corresponds to the more precocious evolution of the female organism.

It should be noted that in the tables above cited the maximum is actually given as occurring at the age of twenty; and that after this period the weight diminishes again, subsequently increasing up to an age that varies according to the sex. But this maximum at the age of twenty must be considered as one of the false results of mean averages; and it must be explained on the ground that after the twentieth year the death rate has eliminated a series of individuals whose heads were abnormally large, and that a majority of the survivors were those whose heads had developed within normal limits.

This fact is further confirmed by Wagner's figures, cited by Broca:

MEAN WEIGHT OF THE BRAIN
(According TO Wagner)

AgeMenWomen
Under 10 years9851,033
From 11 to 20 years1,4651,285
From 21 to 30 years1,3411,249
From 31 to 40 years1,4101,262
From 41 to 50 years1,3911,261
From 51 to 60 years1,3411,236
Above 60 years1,3261,203

Here again we have a false maximum at twenty, which nature subsequently corrects through mortality.

From such knowledge we obtain certain important rules of hygiene.

The normal brain which exceeds the common limits of volume is not, in an absolute sense, incompatible with life. We need only to call to mind certain men of genius who had the brains of a giant.

Accordingly a brain which exceeds the limits demands of the individual who possesses it that he shall live according to certain special rules of hygiene. Children and young people who are too intelligent, too good, in other words, children of the elite class demand a special treatment, just as much as any other class of beings that pass beyond the bounds of average normality. Parents and teachers ought to be enlightened in regard to these scientific principles; the growth of individuals who are exceptional in regard to their intelligence and their emotions, should be supervised as though it were something precious and fragile. Such individuals are destined to be more subject than others to infective maladies, which frequently prove fatal, developing symptoms of meningitis and cerebral affections. Consequently a hygienic life, psychic repose, an avoidance of emotional excitement, moderate physical exercise in farm or garden, a prolonged stay in the open country, might be the salvation of children of this type, who often are over-praised and over-stimulated by friends and relatives, and consequently subjected to continual excitement and surménage to a degree destructive to their health.

Extreme Individual Variations of the Volume of the Brain.—In regard to individual variations, the authorities give various figures, from which the following have been selected as most noteworthy for their accuracy of research:

NORMAL EXTREMES OF INDIVIDUAL VARIATIONS IN THE VOLUME OF THE BRAIN

AuthorsAge: from 20 to 60 yearsFrom 60 to 90
MaximumMinimumMaximumMinimum
Calori1,5421,0241,4851,080
Bischoff1,6781,0691,6651,080
Without distinction of age:
BrocaMaximum
1,830
Minimum
1,049

These figures refer to individuals belonging to European races.

Comparison with the Brains of Apes.—The brain of the great anthropoid apes (Chimpanzee, Orang-utan, Gorilla), whose total weight of body is comparable to that of man, weighs on an average 360 grams, and the greatest weight which it can attain is 420 gr.

Specific Gravity of the Human Brain.—In normal individuals, the average specific gravity is 1.03; in insane persons it is slightly higher: 1.04.

The Relation between the Weight of the Brain and the Cranial Capacity: Figures given by Lebon:

Weight of the brain in gramsCranial capacity in cubic centimetres
1,4501,650
1,3501,550
1,2501,450
1,1501,350

Figures given by Manouvrier:

Weight of the brain in gramsCranial capacity in cubic centimetres
1,7001,949
1,4501,663
1,2501,432
1,0001,147

Increase in the Volume of the Brain.—Studies regarding the growth of the head, although not yet complete, have gone sufficiently far to give us some useful ideas. In regard to the volume in a general sense, the cranium in its growth obeys the cerebral rhythm.

We shall speak in the section on Technique of the methods of measuring the head: at present it will suffice to point out that the measurements may be made directly upon the cranium, and the cranial capacity calculated directly from the head: and that the maximum linear measurements are sufficient to indicate the volume—such measurements being the three maximum diameters, longitudinal, transverse, and vertical, and the maximum circumference. Even the forehead, as an index of the general volume of the brain, is of interest in researches relating to the volumetric growth of the head.

Regarding the growth of the several cranial dimensions, the most accurate and complete knowledge is furnished by Binet's researches among the school-children of Paris (1902).

This author has made special investigations into the rhythm of growth of the cranium and of the face, with special reference to the period of puberty. The following are the mean averages obtained by him, relative to the three diameters corresponding to the three maximum dimensions of the head:

MEAN AVERAGES OF CEPHALIC MEASUREMENTS TAKEN UPON CHILDREN OF DIFFERENT AGES
(Binet: From the schools of Paris)

MeasurementKindergartensLower primary schoolsUpper primary schoolsNormal schools
4 years5 years8 years10 years12 years14 years14 years16 years18 years
Antero-post. diameter169.5173.9174.7177.1181.5181.5185.3188.3190.4
Transverse diameter140.6141.7145145.7147.9150.1155.5152.3156.7
Vertical diameter118.8121.6122122.8127.6129.7128.1131.4130.8

It is evident that these figures contain inaccuracies, especially in regard to the vertical diameter (where the subsequent two-year period gives a smaller measurement than the preceding) due to the fact that the averages were obtained from an insufficient number of subjects or from subjects differing too widely in intelligence (from schools of different grades). For this reason Binet summarises the differences in growth, that is, the increase in relation to the diameters, under broad groups (six year groups, from four to ten years, and from ten to sixteen), in order to determine whether puberty exerts a sensible influence upon the cranial growth. The result is contained in the following table:

INCREASE OF THE THREE MAXIMUM DIAMETERS OF THE HEAD IN MILLIMETRES FROM FOUR TO EIGHTEEN YEARS OF AGE

Age in years: from — to —4-6; 6-8; 8-1010-12; 12-14; 14-1616-18
Antero-posterior diameter5.6; 0.8; 2.44.4; 1.8; 52.1
8.811.2
Transverse diameter1.1; 3.3; 0.72.2; 3.9; 0.54.4
5.16.6
Vertical diameter2.8; 0.4; 0.84.8; 2.3; 2.50.6
4.09.6

From which it appears that there exists, in regard to the head, a puberal acceleration of growth.

These conclusions of Binet are indirectly confirmed by the researches of Vitale Vitali regarding the development of the forehead in school-children; since it is well known that the forehead represents the index of the general growth of the cerebral cranium.

Vitale Vitali based his observations upon school-children and students between the ages of ten and twenty. He not only measured the width of the forehead (frontal diameter; see Technique), but also measured its height, obtaining the percentage of its relation to the width (frontal index).

These are his figures:

FRONTAL INDEX AND DIAMETER ACCORDING TO AGE

(Vitale Vitali: Researches Among Scholars and Students From 10 To 20 Years Old)

AgeFrontal indexFrontal diameterAmount of increase
11 years73.05107.5—
12 years74.11112.04.5
13 years74.14112.50.5
14 years74.80114.41.9
15 years75.67116.82.4
16 years77.24120.13.3
17 years77.02120.60.5
18 years77.36121.50.9
19 years77.60122.81.3
20 years77.15122.10.7

Accordingly, between the years of fourteen and sixteen there is a puberal acceleration of growth, accompanied by an elevation of the forehead (high frontal index).

Vitali gives, as extreme limits of the frontal index, 68 and 83.

But in order to give a better illustration of the author's figures, his own words may be quoted: "It appears from our observations that the forehead begins to develop in notable proportions during the fourteenth year, and that the development of the frontal region as compared with the parietal region continues to augment up to the sixteenth year; after this it still increases, but only by a few millimetres, until the end of the sixteenth year. The cephalic development is completed between the sixteenth and eighteenth years. This observed fact is of great importance in relation to the development of the intellect."

The most complete figures at the present time on the growth of the brain, are those of Quétélet, which follow its development from birth until the fortieth year. They are summarised in the following table:

INCREASE IN THE CIRCUMFERENCE OF THE BRAIN AND IN ITS THREE MAXIMUM DIAMETERS
(According to Quétélet)

AgeCircumference in millimetresMaximum diameters
Antero-post.TransverseVertical
MenWomenMenWomenMenWomenMenWomen
At birth3353351201201001008080
1 year440439158157127126105105
2 years471469168167135134113113
3 years486483171170137136117115
4 years496493174173138137119116
5 years503500176175139138120117
6 years508505178177140139121117
7 years513509179178142140122118
8 years519512180179143141123118
9 years523515181180144141124119
10 years527517182180145142125119
11 years531518183181146142126120
12 years535519184181147143127121
13 years539520185182147143128122
14 years543521186182148144129123
15 years547523186183149144130124
16 years551525187183150145130125
17 years555528188184151145130125
18 years561531189184152146131126
19 years563533190185153146131126
20 years564535191185153147131126
25 years564537191186153147131127
30 years564538191186153147131127
40 years564538191186153147131127

It appears from the foregoing table that after the twenty-fifth year the growth of the cranium practically ceases in all directions. In regard to the rhythm of growth, the problem is rendered clearer by the following table, which gives the annual increase:

ANNUAL INCREASE IN THE MAXIMUM CRANIAL MEASUREMENTS IN MALES
(From Figures Given by Quétélet)

AgeCircumferenceAntero-post. diameterTransverse diameterVertical diameter
1105382725
2311088
315324
410312
57221
65211
75111
86111
94111
104111
114111
124111
134111
144111
154111
164111
174111
184111
194111
201111

It appears from the above table that the total growth of the cranium takes place to a notable extent during the early years of life; as regards the diameters, the longitudinal diameter grows faster during the first few months than the transverse; but after the first year, the two maximum diameters which determine the cephalic index increase in very nearly the same proportion (constancy of the cephalic index throughout life). The vertical diameter on the contrary undergoes a relatively much greater increase than the two others, since, although much shorter than the transverse, it nevertheless overtakes and surpasses it in its absolute annual increase.

This corresponds to the fact that the first two diameters are indexes of growth relative to the base of the cranium, while the vertical diameter is the index of expansion of the cranial vault, which more directly follows the growth of the brain and elevates the forehead as it pushes upward.

Quétélet's figures, however, fail to show in the rhythm of growth that puberal acceleration which has been observed to take place in the growth of the brain. This contradicts the researches of Vitali and also those of Binet.

Similar studies have been made a number of times during the last few years, especially in America, but with English tables of measurement, and with little uniformity in the results obtained by the different investigators.

Among the most recent and most complete figures should be cited those of Bonnifay[38] in which however the measurement of the vertical diameter is lacking, or in other words the third element needed, in conjunction with the dimensions of length and breadth, to give the volumetric factors.

CRANIAL MEASUREMENTS AT DIFFERENT AGES
(According to Bonnifay)

Age from — to —Absolute figuresAmount of Increase
CircumferenceAntero-posterior diameterTransverse diameterCircumferenceAntero-posterior diameterTransverse diameter
Birth to 15 days343.9116.393.4———
15 days to 2 months368.7126.399.124.810.05.7
3 months to 4 months388.8132.7106.020.16.46.9
6 months to 1 year429.8145.4118.241.012.712.2
1 year to 2 years459.7154.3129.329.98.911.1
2 years to 3 years473.5161.9133.313.87.64.0
3 years to 4 years487.4166.2136.313.94.33.0
4 years to 5 years495.7169.9138.38.33.72.0
5 years to 6 years497.8171.9140.42.12.02.1
6 years to 7 years504.4172.8141.16.60.90.7
7 years to 8 years511.6175.2143.77.22.42.6
8 years to 9 years514.1176.1144.32.50.90.6
9 years to 10 years514.7176.4144.20.60.30.9
10 years to 11 years519.8177.1146.65.10.72.3
11 years to 12 years521.1177.5145.71.30.40.1
12 years to 13 years529.7180.1147.88.62.61.2
13 years to 14 years533.1178.1148.53.4—0.7
14 years to 17 years548.8182.4152.215.72.33.7
22 years to 27 years549.1186.6153.20.34.21.0

Among the linear measurements of the cranium, the one which serves to give the most exact index of volume is the maximum circumference.

This index, nevertheless, is not a perfect one, in the same sense that the stature, for instance, is a perfect index in respect to the body, because in the case of the cranium another element enters in: the form. The cranial circumference of an extremely brachycephalic cranium (almost circular) may contain a larger surface (and consequently include a larger volume), than a maximum circumference of the same identical measure, which belongs to an extremely dolichocephalic cranium (approaching the shape of an elongated ellipse). This may be easily understood if we imagine a loop of thread laid out in the form of a circle: if we pull it from two opposite sides, the enclosed area diminishes until it finally disappears as the two halves of the thread close together, while the length of the thread itself remains unaltered.

Nevertheless, the maximum circumference still remains the linear index best adapted to represent the volume; indeed, the authorities take its proportional relation to the stature as representing the reciprocal degree of development between head and body at the different successive ages.

Here are the figures which Daffner gives in this connection:

DEVELOPMENT OF THE STATURE AND OF THE CEPHALIC PERIMETER FROM BIRTH TO THE AGE OF ELEVEN YEARS

MalesFemales
Number of subjectsAgeStature in centimetresCranial perimeter, centimetresNumber of subjectsAgeStature in centimetresCranial perimeter, centimetres
65At birth51.1734.5865At birth50.2734.23
111.5574.1846.74101.3977.2046.45
302.4385.3248.03302.4583.4847.23
533.3491.8849.20493.4389.9747.73
1124.4396.6449.55814.5096.0748.37
2445.42103.2150.212085.40100.6148.76
2346.41106.4950.731796.37104.9249.87
307.30114.4751.66257.36117.3650.38
288.38112.1051.97248.41121.5850.72
279.40128.4152.38309.40126.7651.10
2110.34129.1252.242810.40130.0051.08
2011.42135.8452.503111.46137.0451.42

DEVELOPMENT OF THE STATURE AND OF THE CEPHALIC PERIMETER BETWEEN THE YEARS OF 13 AND 22

Number of subjectsAgeStature in centimetresCranial perimeter, centimetres
1313.39147.9252.83
2414.50149.2153.53
2015.38163.5554.34
4116.43162.5353.34
3517.36167.9355.89
2618.35171.6554.91
1519.40172.9755.48
620.05173.9756.50
34221.02168.0855.37
17122.22168.0855.62

One very important research made by Daffner is in reference to the maximums and minimums that are normal for each successive age. This is extremely useful for the purpose of diagnosing the morphological normality in relation to the age. He naturally bases his figures upon subjects studied by him personally, who altogether form an aggregate number of 2,230, and are not always sufficiently numerous when distributed according to their ages. Nevertheless, in the great majority of groups, especially those including the younger children, the number of subjects is sufficient and even superabundant.

At all events, Daffner's researches may serve as a valuable guide in the researches that lay the foundation for diagnosis; and every future investigator will find it an easier task, under such guidance, to make his own contribution to it and to correct those inaccuracies which (for certain epochs) are to be attributed to an insufficient number of subjects.

Daffner distinguishes, for each year, a maximum and a minimum both for the stature and for the cephalic perimeter; but since the person having the maximum stature does not always have the maximum cephalic perimeter, and vice versa, the author indicates, in connection with the maximum and minimum figures, the other of the two measurements which, as a matter of fact, corresponds to them in each given case.

INDIVIDUAL VARIATIONS

MAXIMUMS AND MINIMUMS OF STATURE AND OF CRANIAL CIRCUMFERENCE

AgeMeasurements
S.—Stature
Cc.—Cranial circumference
Maximum (M.) and minimum (m.) in millimetresMeasurements occurring in combination with the M. or m. measurements
Males from birth to the age of eleven years
At birthCranial circumf.M. = 372(S. = 625).
m. = 326(S. = 500).
StatureM. = 550(Cc. = 369, 365, 354).
m. = 480(Cc. = 343, 341, 337).
1 yearCranial circumf.M. = 491
m. = 456
StatureM. = 805(Cc. = 491).
m. = 680(Cc. = 456).
2 yearsCranial circumf.M. = 506(S. = 855).
m. = 462(S. = 800).
StatureM. = 920(Cc. = 496).
m. = 785(Cc. = 467).
3 yearsCranial circumf.M. = 521
m. = 462(S. = 915).
StatureM. = 995(Cc. = 521, 501).
m. = 795(Cc. = 472).
4 yearsCranial circumf.M. = 530(S. = 1035).
m. = 465(S. = 900).
StatureM. = 1090(Cc. = 510).
m. = 835(Cc. = 499, 481).
5 yearsCranial circumf.M. = 527(S. = 1070).
m. = 481(S. = 930).
StatureM. = 1173(Cc. = 519).
m. = 920(Cc. = 495).
6 yearsCranial circumf.M. = 532(S. = 1090).
m. = 481(S. = 1045).
StatureM. = 1163(Cc. = 517).
m. = 950(Cc. = 495).
7 yearsCranial circumf.M. = 541(S. = 1232).
m. = 502(S. = 1156, 1223).
StatureM. = 1276(Cc. = 527).
m. = 1092(Cc. = 514).
8 yearsCranial circumf.M. = 542(S. = 1207, 1292).
m. = 496(S. = 1158).
StatureM. = 1375(Cc. = 537).
m. = 1099(Cc. = 497).
9 yearsCranial circumf.M. = 548(S. = 1333).
m. = 507(S. = 1250).
StatureM. = 1383(Cc. = 546).
m. = 1185(Cc. = 522).
10 yearsCranial circumf.M. = 553(S. = 1303).
m. = 497(S. = 1270).
StatureM. = 1372(Cc. = 538).
m. = 1218(Cc. = 534).
11 yearsCranial circumf.M. = 543(S. = 1350).
m. = 505(S. = 1307).
StatureM. = 1466(Cc. = 542).
m. = 1300(Cc. = 513).
Note. ——- indicates that the number of subjects is abundant.
_____ indicates that the number of subjects is sufficient.
..... indicates that the number of subjects is scarce.

FEMALES FROM BIRTH TO THE AGE OF ELEVEN YEARS

AgeMeasurements
S.—Stature
Cc.—Cranial circumference
Maximum (M.) and minimum (m.) in millimetresMeasurements occurring in combination with the M. or m. measurementsObservations
At birth.Cranial circumf.M. = 372(S. = 500).(The most frequent S. was 500 mm. combined with CC. = 357, 337.)
m. = 324 (S. = 480).
Stature M. = 565 (Cc. = 355).
m. = 475 (Cc. = 333, 325).
1 yearCranial circumf.M. = 486 (S. = )
m. = 450 (S. = 750, 740).
Stature M. = 810 (Cc. = 486).
m. = 705 (Cc. = 455).
2 yearsCranial circumf.M. = 495 (S. = 850).
m. = 448 (S. = 810).
Stature M. = 910 (Cc. = 491).
m. = 720 (Cc. = 464).
3 yearsCranial circumf.M. = 501 (S. = 865).
m. = 457 (S. = 870).
Stature M. = 1015 (Cc. = 473).
m. = 810 (Cc. = 476).
4 yearsCranial circumf.M. = 510 (S. = 1050).
m. = 455 (S. = 920, 870).
Stature M. = 1060 (Cc. = 507).
m. = 860 (Cc. = 461).
5 yearsCranial circumf.M. = 515 (S. = 1035).
m. = 462 (S. = 905).
Stature M. = 1140 (Cc. = 492).
m. = 875 (Cc. = 481).
6 yearsCranial circumf.M. = 522 (S. = 1020).(The maximum S. was found in a child of 6 years and 11 months; the next highest stature was 1177 mm., Cc. 512; another little girl of 6 years and 11 months had S. = 1099; Cc. = 507).
m. = 460 (S. = 965).
Stature M. = 1221 (Cc. = 516).
m. = 920 (Cc. = 489).
7 years.Cranial circumf.M. = 524 (S. = 1215).
m. = 479 (S. = 1185).
Stature M. = 1270 (Cc. = 513).
m. = 1058 (Cc. = 499).
8 yearsCranial circumf.M. = 542(S. = ).
m. = 484(S. = ).
StatureM. = 1328(Cc. = 542).
m. = 1082(Cc. = 484).
9 yearsCranial circumf.M. = 526(S. = 1272).
m. = 493(S. = 1306).
StatureM. = 1325(Cc. = 520).
m. = 1173(Cc. = 499).
10 years.Cranial circumf.M. = 533(S. = 1291).
m. = 476(S. = 1204).
StatureM. = 1403(Cc. = 530).
m. = 1153(Cc. = 506).
11 years.Cranial circumf.M. = 537(S. = 1420).(The next higher S. was 1495, with a Cc. of 529).
m. = 478(S. = 1284).
StatureM. = 1464(Cc. = 512).
m. = 1255(Cc. = 497).

EXTREMES BETWEEN THE AGES OF 13 AND 22 YEARS
(The figures here given are less exact, because of the great scarcity of subjects)

AgeMeasurements
S.—Stature
Cc.—Cranial circumference
Maximum (M.) and minimum (m.) in millimetresMeasurements occurring in combination with the M. or m. measurements
13 yearsCranial circumf.M. = 554(S. = ).
m. = 492(S. = ).
StatureM. = 1715(Cc. = 554).
m. = 1345(Cc. = 492).
14 yearsCranial circumf.M. = 564(S. = 1560).
m. = 515(S. = 1555).
StatureM. = 1630(Cc. = 537).
M. = 1405(Cc. = 526).
15 yearsCranial circumf.M. = 567(S. = 1575).
m. = 526(S. = 1570).
StatureM. = 1795(Cc. = 566).
m. = 1450(Cc. = 534).
16 yearsCranial circumf.M. = 566(S. = 1675).
m. = 519(S. = 1460).
StatureM. = 1807(Cc. = 561).
m. = 1330(Cc. = 532).
17 yearsCranial circumf.M. = 582(S. = 1757).
m. = 507(S. = 1610).
StatureM. = 1759(Cc. = 560).
m. = 1561(Cc. = 555).
18 yearsCranial circumf.M. = 565(S. = 1785).
m. = 522(S. = 1702).
StatureM. = 1930(Cc. = 557).
m. = 1604(Cc. = 536).
19 yearsCranial circumf.M. = 578(S. = 1707).
m. = 541(S. = 1693).
StatureM. = 1823(Cc. = 545).
m. = 1637(Cc. = 549).
20 yearsCranial circumf.M. = 594(S. = 1671).
m. = 551(S. = 1780).
StatureM. = 1832(Cc. = 560).
m. = 1629(Cc. = 552).
21 yearsCranial circumf.M. = 590(S. = 1700).
m. = 512(S. = 1590).
StatureM. = 1790(Cc. = 581).
m. = 1570(Cc. = 571).
22 yearsCranial circumf.M. = 595(S. = 1730).
m. = 510(S. = 1650).
StatureM. = 1790(Cc. = 576).
m. = 1570(Cc. = 548).

Nomenclature Relating to Cranial Volume. Anomalies.—(In regard to the method of directly measuring or calculating the cranial capacity, and of taking and estimating the measurements of the skull, see the section on Technique.)

Limits.—The cranial capacity, according to Deniker, has normally such a wide range of oscillation that the minimum is fully doubled by the maximum, the limits being respectively 1,100 and 2,200 cubic centimetres—these figures, however, including men of genius. Furthermore, the mean average capacity oscillates between limits that change according to race—not only because the cerebral volume may of itself constitute an ethnic characteristic (superior and inferior races) with which the form of the forehead is usually associated, but also because the cranial volume bears a certain relation to the stature, which is another factor that varies with the race.

Deniker gives the following mean averages of oscillations:

Europeansfrom 1,500 to 1,600 cu. cm.
Negroesfrom 1,400 to 1,500 cu. cm.
Australians, Bushmenfrom 1,250 to 1,350 cu. cm.

The average difference of cranial capacity is 150 cubic centimetres less in woman than in man.

The following nomenclature for oscillations in cranial capacity was established by Topinard, based upon the figures and methods of Broca:

Macrocephalic craniafrom 1,950 cu. cm. upward
Large craniafrom 1,950 to 1,650 cu. cm.
Medium or ordinary craniafrom 1,650 to 1,450 cu. cm.
Small craniafrom 1,450 to 1,150 cu. cm.
Microcephalic craniafrom 1,150 cu. cm. downward

To-day, however, the terms macrocephalic and microcephalic have come to be reserved for pathological cases. Virchow has introduced the term nanocephalic to designate normal crania of very small dimensions; while Sergi has adopted a binomial nomenclature, calling them eumetopic microcephalics, which signifies possessed of a fine forehead: since, as we have seen, it is precisely the shape of the forehead which determines normality. And in place of macrocephalic, we have for very large normal crania the new term megalocephalic.

Pathological terminology includes the following nomenclature: macrocephaly, sub-macrocephaly, submicrocephaly, microcephaly.

Microcephaly may fall as low as 800 cubic centimetres; macrocephaly may rise as high as 3,000 cubic centimetres, and at these extremes the volume alone is sufficient to denote the anomaly. But in many cases the volume may fall within the limits of normality; in such cases it is the pathological form and an examination of the patient which lead to the use of the term submicrocephalic in preference to that of nanocephalic, etc.

The volume, taken by itself, if it is not at one of the extreme limits, is not sufficient to justify a verdict of abnormality.

The terms macro- and microcephalic are, in any case, quite generic, and simply indicate a morphological anomaly, which may include many widely different cases, such, for example, as rickets, hydrocephaly, pachycephaly, etc., all of which have in common the morphological characteristic of macrocephaly.

In rickets, for instance, macrocephaly may occur in conjunction with a normal or even supernormal intelligence (Leopardi). Microcephaly, on the contrary, could never occur combined with normal intelligence, since it is a sign indicative of atrophy of the cerebro-spinal axis and diminution or, as Brugia phrases it, dehumanization of the individuality.

Normal Children
Abnormal   "

Fig. 82.—Growth of Cranial Circumference.

In all the widely varied series of pathological and degenerate individuals who are included under the generic names of "deficients" and "criminals," there is a notable percentage of crania that are abnormal both in volume and in form; the percentage of crania with normal dimensions is less than that of the crania which exceed or fall below such dimensions, and among these there is a preponderance of submicrocephalic crania: a morphological characteristic associated with a partial arrest of cerebral development, due to internal causes and manifested from the earliest period of infant life.

The accompanying chart (Fig. 82) demonstrates precisely this fact. It represents the growth of the cranium in normal and in abnormal children. The abnormal are at one time superior and at another inferior to the normal children; but their general average shows a definite inferiority to the normal. Lombroso established the fact that among adult criminals there is an inferiority of cranial development, frequently accompanied by a stature that is normal, or even in excess of normality.

Quite recently, Binet has called attention to a form of submicrocephaly acquired through external causes, which is of great interest from the pedagogic point of view. Blind children and those who are deaf-mutes have, up to the seventh or eighth year, a cranium of normal dimensions, but by the fourteenth or fifteenth year the volume is notably below the normal, and this stigma of inferiority remains permanently in the adults. This fact, which is of very general occurrence, is attributed by Binet to a deficiency of sensations, and consequently a deficiency of certain specific cerebral exercises.

This whole question has a fundamental interest for us as educators, because it affords an indirect proof that cerebral exercise develops the brain, or in other words, that education has a physical and morphological influence as well as a psychic one.

This question, coupled with that of the influence of alimentation upon the development of the head, leads to the conclusion that a two-fold nutriment is necessary for the normal development of man: material nutriment and nutriment of the spirit.

It follows that education must be considered from two different points of view: that of the progress of civilisation, and that of the perfectionment of the species.

In regard to variations of cranial volume, just as in the case of variations of stature, there are a number of different factors which may be summed up in such a way as to afford us certain determining characteristics of social caste. Delicate questions these, which we may sum up in a single question equally delicate, that lends itself to a vast amount of discussion; namely, what is the relation between the volume of the brain and the development of the intellect?

Individual Variations of Cerebral (and Cranial) Volume. Relation between the Development of the Cerebral Volume and the Development of the Intelligence.—The series of arguments in reference to the cerebral volume ought to be considered independently of the biological and biopathological factors which we have up to this point been considering; namely, race, sex, age, degeneration and disease.

That is to say, in normal individuals, other conditions being equal, volumetric differences of the brain may be met with, analogous to those other infinite individual variations, in which nature expresses her creative power, even while preserving unchanged the general morphology of the species.

It is due to this fact that the innumerable individuals of a race, while all bearing a certain resemblance to one another, are never any two of them identically alike.

Variations of this sort, which might be called biological individualisations, are in any case subject to the most diverse influences of environment, which concur in producing individual varieties.

This is in accordance with general laws which are applicable to any biological question whatever, but that in our case assume a special interest. There are certain men who have larger or smaller brains; and there are men of greater or of less intelligence. Is there a quantitative relation between these two manifestations, the morphological and the psychic?

Everyone knows that this is one of those complicated, much discussed questions that spread outside of the purely scientific circles and become one of the stock themes of debate among classes incompetent to judge; consequently it has been colored by popular prejudice, rather than by the light of science. It is well that persons of education should acquire accurate ideas upon the subject.

If the volume of the brain should be in proportion to the intellectual development, argues the general public, what sort of a head must Dante Alighieri have had? He would have had to be the most monstrous macrocephalic ever seen upon earth. And on the basis of this superficial observation, they wish to deny any quantitative relation whatever between brain and intelligence. And yet it is this same general public that keeps insisting: Woman has less intelligence than man, because she has a smaller brain.

A single glance up and down the zoological scale suffices to show that throughout the whole animal series a greater development of brain is accompanied by a correspondingly greater development of psychic activity; and that there is a conspicuous difference between the human brain and that of the higher animals (anthropoid apes), corresponding to the difference between the level of man's psychic development and that of the higher mammals; and this justifies the assertion that, as a general rule, there is a quantitative relation between the brain and the intellect.

This suggests the thought that the perfect development of this delicate instrument, the brain, demands a variety of harmonious material conditions, among others the volume, in order to render possible the conditions of psychic perfection.

From this premise, we may pass on to a more particularised study of the material conditions essential to the superior type of brain. The volume is the quantitative index; but the quality may be considered from various points of view, which may be grouped as follows:

I. The General Morphology of the Brain in reference to:

(a) The harmonious, relative volumetric proportions between the lobes of the brain (namely, the proportion between the frontal, parietal, temporal and occipital lobes). It was formerly believed that a superior brain ought to show a prevalence of the frontal lobes, since a lofty forehead is a sign of intellect; but it was afterward established that there is no direct relation between the development of the forehead and the development of the frontal lobes; a higher forehead results from a greater volume of the entire cranial contents; the superior brain, on the contrary, is that in which no one lobe prevails over another, but all of them preserve a reciprocal and perfect harmony of dimensions.

(b) The form, number and disposition of the cerebral convolutions, and of the folds of the internal passage (Sergio Sergi).

(c) The form, number and disposition of the cells in the cortical strata of the brain, and the proportion between the gray matter and the white, that is to say, between the cells and fibres; in short, the histological structure of the brain.

II. The Chemistry of the brain:

(a) The chemical composition of the substances constituting the brain, which may be more or less complicated. (Recent studies of the chemical evolution of living organisms have demonstrated that the atomic composition is far more complex in the higher organisms.)

(b) The intimate interchange of matter in the cerebral tissues, in connection with their nutrition.

(c) The chemical stimuli coming from the so-called glands of internal secretion (thyroid, etc.).

All these conditions concur in determining the quality of the cerebral tissues. In its ontogenetic evolution, for example, the brain does not merely increase in volume, and its development is not limited to attaining a definite morphology; but its intimate structure and its chemical composition as well must pass through various stages of transition before attaining their final state. We know, for example, that the myelination of the nerve fibres takes place upward from the spinal marrow toward the brain, and that the pyramidal tracts (voluntary motor tracts) are the last to myelinate, and hence the last to perform their functions in the child.

The consistence of the cerebral mass and its specific gravity also differ in childhood from that of the adult state. The evolution of the brain is therefore a very complex process; and this process may not be fully completed (for instance, it may be completed in volume, but not in form or chemical composition, etc.).

Consequently, just as in the case of volume, there may be various qualitative conditions, such as would produce organic inferiority.

But supposing that qualitatively the evolution has been accomplished normally, where there is greater cerebral volume, is there a correspondingly greater intellect?

At this point it is necessary to take into consideration another series of questions regarding the brain considered as a material organ, and having reference to the relation between the volume of the brain and that of the stature.

The brain must govern the nerves in all the active parts of the body, especially the striped muscles, which perform all voluntary movement. Consequently the cerebral volume must be in proportion, not only to the intellectuality, but also to the physical activity.

Evidently, a greater mass of body demands a greater nervous system to give it motive power.

The biological law is of a general nature: if the brain of a rat weighs 40 centigrams, that of an ox weighs 734 grams, and that of an elephant 4,896 grams.

"The absolute volume of the brain increases with the total volume of the body."

But this correspondence is not proportional. There are two facts that alter the proportions. One of these is that the mass of the body increases faster than the brain, throughout the biological series of species, so that the smaller the body the greater the proportional quantity of brain. Just the opposite from what was found to hold true for the absolute weight.

It may be affirmed as a biological law that "the relative volume of the brain increases as the size of the body diminishes." For instance, the tiny brain of a rat is a 43d part of the total volume of its body; the brain of an ox, on the contrary, is a 750th part. Consequently we may say that the little rat has relatively a far larger brain than the huge ox.

And the same thing holds true among men; those of small build have a proportionately larger brain than those of large build.

A second fact which alters the absolute proportion between the volume of brain and the volume of body has reference to the "functional capacity" of the active parts. The muscles which are capable of the best activity and the greatest agility are the ones more abundantly stimulated through their nerves than those which are capable only of slow and sluggish action. The same may be said of the organs of sensation; the more highly the sensibility is developed, the larger are the corresponding nerves, and consequently the greater is the corresponding quantity of cerebral cells. Accordingly the animal which is nimblest in its movements, and most capable of sensations has in proportion to this greater functional activity a greater cerebral volume. In this same way we may explain the enormous difference in relative brain volume between the extremely active, sensitive and intelligent little beast which we call the rat, and the sluggish and stupid animal which we call the ox. Consequently this functional activity has a correspondingly greater volume of brain, without a correspondingly greater volume of the various highly sensitized organs. In such a case it may be stated as a general law that "the relative volume of the brain is in direct proportion to the intelligence (or, more broadly, to the functional activity), while the absolute volume is in direct relation to the total mass of the body."

Man has a cerebral volume of 1,500 cubic centimetres, a volume equal to a fortieth part of the whole body. Consequently he has a brain twice the actual size of that of the ox, while considered in its relation to bodily bulk, he has more brain than the smallest rat (man = 1/40; rat = 1/43). A volume so far exceeding the proportions found in animals, is beyond doubt directly related to human intelligence.

Relation between Cerebral and Intellectual Development in Man.—This ends our examination of the generic question of the relation between cerebral volume and intellect.

Granting these biological principles, and wishing to apply them to normal man, let us go back to our first question: "Do persons of greater intelligence have a greater cerebral volume, and consequently a larger head?"

There is an extensive literature upon this question, the tendency of which is to decide it affirmatively.

Parchappe has made a comparative study between writers of recognized ability and simple manual workers, and has found that the former have a development of the head notably in excess of the latter.

Broca took measurements, in various hospitals, of the heads of physicians and male nurses, and found a greater development of head in the case of the physicians.

Lebon made a study of cranial measurements in men of letters, tradesmen, the nobility and domestic servants, and found the maximum development among the men of letters and the minimum among the servants. The tradesmen, who at all events are performing a work of social utility, stand next to the men of letters; while the aristocrats show some advantage over the domestics. Bajenoff took his measurements from famous persons on the one hand and from convicted assassins on the other, and found a greater head development among the former.

Enrico Ferri has made similar researches among soldiers who have had a high-school education and those who are uneducated, and has found a more developed cranium among the educated soldiers.

I also have made my own modest contribution to this important question, by seeking to determine the difference in cranial volume between the school-children who stand respectively at the head and foot of their class, and have found among children of the age of ten a mean cranial circumference of 527 millimetres for the more intelligent and of only 518 millimetres for the less intelligent.

Similar results were obtained by Binet in his researches among the elementary schools of Paris. He found among children of the age of twelve that the brightest had a mean cranial circumference of 540 millimetres and those at the foot of their class a mean of only 530 millimetres. The following table gives a parallel between these various cranial measurements:

CRANIAL MEASUREMENTS (in Millimetres)[39]

Binet Children in the elementary schools of Paris, from 11 to 13 years of age
Montessori Children in the elementary schools of Rome, from 9 to 11 years of age

MeasurementsBinet's figuresMontessori's figures
Pupils chosen for intelligencePupils chosen as backwardDifferencePupils chosen for intelligencePupils chosen as backwardDifference
Maximum circumference of cranium.540530+10527518+9
Length of cranium181177+4180177+3
Breadth of cranium150.4146.2+4.2143140+3
Height of cranium123.3124-0.7130127+3
Minimum frontal diameter.104102+29998+1
Height of forehead4645.5+0.55756+1

By calculating the cranial capacities according to Broca'a method, I obtained:

Cranial capacity in the best pupils chosen1557 cu. cm.
the worst pupils chosen1488 cu. cm.

From all these manifold researches above cited, we can reach no other conclusion than that individuals of greater intelligence have a larger quantity of brain; or else that individuals with a greater quantity of brain are more intelligent.

There is a subtle distortion of this principle, which many sociological anthropologists have taken as their starting-point, especially in Germany, in their attempt to establish a biological basis for the Schopenhauerian theories of Friedrich Nietzsche.

According to these, the persons who have acquired high social positions are biologically superior (possessing a greater cerebral mass), and the same may be said of conquering races as compared with the conquered. Differences in caste are to be explained in the same way, and on this ground nature sanctions the social inferiority of woman.

This is a question of the greatest importance, which merits a vast amount of discussion.

What Sort of Man is the Most Intelligent?—Straightway, a first serious objection suggests itself: What sort of persons are the most intelligent? Are they really those who have attained the higher academic degrees and the most eminent social positions? Consequently, is the Prime Minister more intelligent than the Assistant Secretary of State, and the latter more intelligent than the Head of a Department, and he again than the door-keeper?

Are literary productions and the acquisition of laurels reliable tests of intelligence? Is this man a doctor because he is more intelligent, and that man a hospital attendant because he is less intelligent?

It is evident that there exist in the social world certain privileges of caste, which may raise to the pinnacle of literary glory or to a clamorous notoriety certain persons who owe their rise to favoritism and trickery; or at least, so-called "literary fame" must be dependent upon the possibility of getting writings published, which another man perhaps would have had no way of bringing before the public so as to make them known and appreciated; just as, on the other hand, there are men of genius who are destined to feel their inborn intelligence suffocating under the cruel tyranny of existing economic conditions, which punish pauperism with obscurity and hold protection and favours at a distance.

A thousand various conditions of our social environment hinder powerful innate activities from finding expression and attaining elevated social positions. Now, when we start to measure these different categories of persons, shall we measure the more or the less fortunate individuals, those more or those less favoured by economic conditions of birth and environment, or shall we measure those persons who are actually the more and the less intelligent?

And even in school can we be sure that the child whom we judge the most intelligent is actually so? Studies in experimental psychology made in quite recent times of men whose works justify their being placed in the ranks of geniuses, have shown that these men of genius were never, in their school-days, either at the head of their class, or winners of any competitions. Consequently, we have not yet learned the means of judging intelligence.

If we stop to think of the way in which the intelligence of pupils was judged up to only a few years ago, according to pedagogic methods that were a remnant of the pietistic schools, this will help us to form some idea. The more intelligent ones were those best able to recite dogmatic truths from memory. And even to-day we have not advanced very far above that level.

As a general rule that pupil is considered the most intelligent who best succeeds in echoing his teacher and in modeling his own personality as closely as possible upon that of his preceptor.

This fact is so well known that it has come to be utilised as one of the clever tricks for obtaining higher marks even in university examinations, and for winning competitions; it is known that the prize is reserved for the student who can repeat most faithfully and proclaim most eloquently the master's own ideas.

Here is precisely one of the most fundamental problems offered by scientific pedagogy: how to diagnose the human intelligence, and distinguish the person who is intelligent from the person who is not. A difficult task, or rather a difficult problem.

The Influence of Economic Conditions upon the Development of the Brain.—Certain factors, due to environment, exert an influence upon the development of the cerebral volume; this fact opens up another whole series of interesting questions.

Among the factors due to environment, the leading place is held by nutrition, dependent upon economic conditions.

Niceforo contends that among the various social classes, those who can obtain the best nourishment have the greatest development of brain, and consequently of head. He offers in evidence the figures summarised in the following table:

CIRCUMFERENCE OF THE HEADS OF

Boys of the age ofRichSons of small tradesmen and clerksPoor
11 years534.9529.7524.8
12 years537.1530.3524.9
13 years537.8532.4528.6
14 years545.4533.3528.4

In short, there is a gradation of cranial volume corresponding to the economic status in society. This is a condition easy to understand: we simply find repeated in this particular the same thing that we have already seen happen to the body as a whole; the organism in its entirety and consequently each separate part of it—if it is to develop in accordance with its special biological potentiality and so attain the limits of finality set for it—must receive nourishment. It is only natural that children who, during their period of growth, are deprived of sufficient and suitable nutrition should remain inferior in development to those who had the advantage of an abundance of the proper kind of food. The influence of the economic factor is indisputable. Consequently, reverting once more to the studies above cited, may we not conclude that the man of letters, the physician, the person of distinction have a greater development of head than the manual labourer, the hospital attendant, the illiterate, simply because it was their good fortune to obtain better nutriment, through belonging to the wealthy social classes?

The Influence of Exercise upon Cerebral Development.—The second interesting question is in reference to the influence which exercise may have upon the development of the brain. As early as 1861 Broca investigated this question in a classic work: De l'influence de l'éducation sur le volume et la forme de la tête ("The influence of education on the volume and form of the head"), in which he arrived at the following conclusion: that a suitable exercise (intellectual culture, education, hygiene) does have an influence on the development of the brain, in the same way as with any other organ, as, for example, the striped muscles, which gain in volume and strength and beauty of form through gymnastic exercise. "Consequently," exclaims Broca enthusiastically, "education not only has the power of rendering mankind better; it has also the marvellous power of rendering man superior to himself, of enlarging his brain and perfecting his form!"

"Popular education means the betterment of the race."

Accordingly we might say, relying on the above-mentioned studies, that the man of letters, the physician, the person of distinction have a more highly developed head than the manual workman, the hospital attendant and the illiterate, because they exercised their brain to a greater extent, and not because they were more intelligent. This, however, is a question which differs profoundly from that which we were previously considering, nutrition, because in this case exercise, in addition to developing the organ, gives its own actual and personal contribution to the intelligence.

Therefore, we are able to be creators of intelligence and of brain tissue, which in turn becomes the creative force of our civilisation. A system of instruction which, in place of over-straining the brain, should aid it to develop and perfect itself, stimulating it to a sort of auto-creation, would truly be, as Broca says, "capable of rendering man superior to himself." This is what is being sought by scientific pedagogy, which has already laid the foundation of "cerebral hygiene."

We are still very far to-day from realising this highest human ambition! We do not yet know the basic laws of the economy of forces that would lead to a stimulation of the human activities to the point of creation; on the contrary, we are still at a primitive period, in which many of the environing conditions interfere, to the point of preventing the human germ to attain its natural biological finality. In short, we know how to obtain artificially an arrest of development; but we have not yet learned the art of aiding and enriching nature!

The Influence of the Biological Factor upon Cerebral Development.—What conclusion ought we to reach from what has been said up to this point? Upon what does the cerebral volume depend, in all its individual variations, resting on the common biological bases of race, normality and sex? Is individual variation due solely to causes of environment, such as nutrition and exercise? And does it follow that it is not dependent upon biological potentialities more or less pronounced in separate individuals—in short, upon different degrees of intelligence?

In the presence of such a multiplicity of questions we must proceed, not to a selection but to a sum. Every biological phenomenon is the result of a number of factors. The development of the brain depends in precisely the same way as the development of the whole body or of a single muscle, upon the combined influence of biological factors determining the individual variability, and of factors of environment, principal among which are nutrition and exercise. A suitable diet aids growth, and so also does a rational exercise; but underlying all the rest, as a potential cause, is the biological factor which mysteriously assigns a certain predestination to each individual. The environment may combat, alter, and impede what nature "had written upon the fertilised ovum;" but we cannot forget that this scheme, pre-established by the natural order of life, is the principal factor among them all, the one which determines the "character of the individual."

Now, on the basis of this influence of the biological factor upon the cerebral development, we may affirm that: to greater intelligence there corresponds a brain more developed in volume. What gives us proof of this is the brain of the exceptional man—of men of genius, who frequently have heads of extraordinary volume.

Persons of high celebrity, and not those, for example, who have become known through some recent discovery in the field of positive science—since a piece of good fortune may coincide with a normal cranial volume—but the true creative geniuses who have left the deep imprint of themselves upon their immortal works, have generally had a cerebral volume that was truly gigantic: the poetic brain of the great Schiller weighed 1,785 grams, that of Cuvier, the naturalist, 1,829 grams, that of the great statesman, Cromwell, 2,231 grams, and lastly, that of Byron, 2,238 grams. The brain of the normal man weighs about 1,400 grams.

Consequently, these are extraordinary volumetric figures that could not be acquired, either by much eating, or by being educated according to the scientific means of the most advanced pedagogy; they are due to the extraordinary biological potentiality of the man of genius.

In these extraordinary heads the exceptional volume is combined with a characteristic form: they always have a more than normal development of the forehead. Even in the course of biological evolution, as we have already seen, in the higher species a greater cerebral volume has a correspondingly broader and more erect forehead. If we examine portraits of men of genius, what strikes us chiefly in them is the high and spacious brow, as though men of genius, in comparison with the rest of us, were representatives of a superior race. But if the portrait shows the face taken in profile, it will be easily observed that the direction of the forehead is not vertical, but even slightly recessive; that is, it preserves the characteristic male form, with the vault slightly inclined backward and the orbital arches slightly pronounced.

The Pretended Cerebral Inferiority of Woman.—One final argument, which is of interest to us, is the great question of the relation between cerebral volume and intelligence in woman. Because, as you know, there is a very widespread belief of long standing that is confirmed in the name of science: that woman is biologically, in other words totally, inferior, that the volume of her brain is condemned by nature to an inferiority against which nothing can prevail. Just as our perfected pedagogy, excellent alimentation and improved hygienic conditions could never endow a normal man with the brain of a genius, in the same way, so it is said, it is impossible ever to augment the size of the brain of woman, who is necessarily condemned to resign herself to remain in that state of social inferiority to which she is now reduced and from which she would in vain attempt to emancipate herself.

Names as famous as that of Lombroso[40] which are associated with the progress of positive science, lend the weight of their authority to this form of condemnation! And it is not easy to do away with this sort of prejudice, which has slowly been disseminated among the people under the guise of a scientific theory. But to-day there are scientists who have been impelled to make certain extremely minute, impartial and objective studies, without any preconception on the subject—such men as Messedaglia, Dubois, Lapique, Zanolli, and Manouvrier—who, by calculating the cerebral mass, at one time in comparison with the whole body, at another with the surface of the body, and still again with the various active or skeletal parts of the organism—have arrived at an opposite conclusion: namely, that they can demonstrate a greater development of brain in woman. Among these scientists it gives me pleasure to name before all others Manouvrier—one of the most gifted anthropologists of our day—who has devoted twenty years to an exceedingly minute study of this problem. Here in brief outline are his method of procedure and his conclusions. That the cerebral volume should be considered in its relation to the stature is a familiar principle; but a comparison between man and woman based solely upon such a proportion, continues to maintain the cerebral inferiority of woman. Have we, however, the right to compare a volumetric measure (the cerebral mass) with a linear measure (the stature)? Such a comparison is a mathematical error, as we have already technically proved. Accordingly we find that Manouvrier compares the brain with the mass of the whole body, its entire bulk; and he analyzes this entire bulk, considering separately its active parts, without troubling himself about their functional potentiality. He deduces from them certain figures and proportions; more than that, he forms a sort of index, which might be called the "index of sexual mass," between woman (minor mass) and man, reduced to a scale of 100—which may be summed up in an equation: man:100 = woman:the following percentual analyses:

Stature and weight of body88.5
Weight of brain90.0
Weight of skeleton (femur)62.5
CO2 exhaled in twenty-four hours64.5
Vital capacity (at age of eighteen)72.6
Strength of hands57.1
Strength of vertical traction52.6

Hence it is evident, that, in comparison with her actual organic mass, woman differs from man far more than is indicated by the differences in stature and in bodily weight.

Instead of taking all these various separate mean measurements, let us take one single comprehensive mean resulting from them: woman:man = 80:100; there we have the proportion. Now, Manouvrier proceeds to reduce all the separate measurements of man from 100 to 80, and calculates how much brain man would lose if he were reduced to a mass having feminine limits; he finds that the loss would be 172 grams. Woman on the contrary has only 150 grams of brain less than man. Consequently the cerebral volume of woman is superior to that of man!

This is an anthropological superiority which is further revealed in the more perfected form of the cranium, insomuch as woman has an absolutely erect forehead and has no remaining traces of the supraorbital arches (characteristics of superiority in the species).

Thus, we have a contradiction between existing anthropological and social conditions: woman, whom anthropology regards as a being having the cranium of an almost superior race, continues to be relegated to an unquestioned social inferiority, from which it is not easy to raise her.

Who is Socially Superior?—But here again we may ask, as we did regarding the question of intelligence: What constitutes social superiority? And in our social environment who is superior and who is inferior?

Fig. 83.—Leptoprosopic face.

Fig. 84.—Chameprosopic face.

Fig. 85.—Lina Cavalieri.

Fig. 86.—Maria Mancini.

Social superiority, like moral superiority, is the product of evolution. In primitive times when men, in order to live, were limited like animals to gathering the spontaneous fruit of the earth, according to the poetry of the biblical legend, and according to what sociology repeats to-day, the superior man was the one of largest stature, the giant. People paid him homage because he was the most imposing, without troubling themselves to ask whether, or not, he might be insane. In this way Saul was the first king. When the time came that men were no longer content to live on the spontaneous fruit of the earth, but were forced to till the soil, then a new victory was inaugurated, the victory of the more active and intelligent man. David killed Goliath. This great Bible story marks the moment when the superiority of man came to be considered under a more advanced and spiritual aspect. When the men who cultivated the earth began to feel the need of other neighbouring lands and became conquerors, then the soldier was evolved, until in the middle ages there resulted such a triumph of militarism that the nobles alone were conquerors in war; and the persons who to-day would be called superior, the men of intellect, the poets, were considered as feeble folk, despicable and effeminate. In our own times, now that the great conquests of the earth have been made and the victorious people consequently brought into harmony, the moment has come for conquering the environment itself, in order to wring from it new bread and new wealth. And this is the proud work of human intelligence which creates by aiding all the forces of nature and by triumphing over its environment; thus to-day it is the man of intelligence who is superior. But it seems as though a new epoch were in preparation, a truly human epoch, and as though the end had almost come of those evolutionary periods which sum up the history of the heroic struggles of humanity; an epoch in which an assured peace will promote the brotherhood of man, while morality and love will take their place as the highest form of human superiority. In such an epoch there will really be superior human beings, there will really be men strong in morality and in sentiment. Perhaps in this way the reign of woman is approaching, when the enigma of her anthropological superiority will be deciphered. Woman was always the custodian of human sentiment, morality and honour, and in these respects man always has yielded woman the palm.

Face and Visage

The Limits of the Face.—The face is that part of the head which remains when the cranial cavity is not considered. To attempt to separate accurately, in the skeleton, the facial from the cerebral portion would involve a lengthy anatomical description; for our purpose it is enough to grasp the general idea that the face is the portion situated beneath the forehead, bounded in front by the curves of the eyebrows, and in profile by a line passing in projection through the auricular foramen and the external orbital apophysis (Fig. 39, page (188)).

It is customary during life to consider the entire anterior portion of the head as constituting one single whole, bounded above by the line formed by the roots of the hair, and below by the chin. This portion includes actually not only the face but a portion of the cerebral cranium as well, namely, the forehead; it bears the name of the visage and is considered under this aspect only during life.

Human Characteristics of the Face.—One characteristic of the human cranium, as we have already seen (Fig. 40), as compared with animals, is the decrease in size of the face, and especially of the jaw-bones in inverse proportion to the increase of the cranial volume.

"Man," says Cuvier, "is of all living animals the one that has the largest cranium and the smallest face; and animals are stupider and more ferocious as they depart further from the human proportions."

In man, the cranium, assuming that graceful development which is characteristic of this superior species, surmounts the face, which recedes below the extreme frontal limit of the brain.

The different races of mankind, however, do not all of them attain so perfect a form; in some of them the face protrudes somewhat in advance of the extreme frontal limit, and in such cases we say that it is prognathous.

Thus the relations in the reciprocal development between cranium and face are different in animals and in man; as they also are in the various human races. Cuvier gives some idea of these proportions by comparing the European man with animals, by means of the following formulas which he has obtained by calculating approximately the square surface of a middle section of the head:

Cranium:face =

European man4:1
      (cranium four times the size of the face)
Orang-utan and chimpanzee3:1
Lower monkeys2:1
Carnivora1:1
Ruminants1:2
Hippopotamus1:3
Horse1:4
      (the reverse of man)
Whale1:20

Fig. 87.—Portrait of the Fornarina (Raphael Sanzio) Rome: Barbarini gallery.

Fig. 88.—Triangular face.

Fig. 89.—Ellipsoidal face.

Fig. 90.—Long ovoid face.

But no general law, no systematic connection can be deduced from such relative proportions. They serve only to demonstrate a characteristic.

Upon this characteristic depends preeminently the beauty of the human visage. If we are considering the visage from its æsthetic aspect and wish to compare it with the muzzle of animals, we may say that in regard to its proportions it is as though the muzzle had been forced backward from its apex, while the cranium had swelled, through the increase of its vertical diameter. The muzzle is formed of the two jaws alone, on the upper of which the nose is located horizontally; there is neither forehead nor chin along the vertical line of the visage. As the jaws recede and the cranium augments, the forehead rises, the nose becomes vertical, and when the mandible has retreated beyond the frontal limit, the wide yawning mouth has been reduced in size, while a new formation has appeared below it—the chin. By this, I am trying merely to draw a comparison which I trust will be of service by suggesting a didactic method of illustrating the reduction of an animal's muzzle to human proportions. Whatever forms a part of the visage bears the morphological stamp of humanity: the forehead, the erect nose and the entire region of the mandible, which contains the principal beauty of the human face.

The narrow opening of the lips, mobile because so richly endowed with the muscles that unite in forming it, is quite truly the charming and gracious doorway of the organs of speech, which by shaping the internal thought into words are able to give it utterance; while the winning smile allures, captivates and consoles, thereby accomplishing an eminently social function; and sociability is inseparable from humanity.

The animal mouth, on the contrary, is the organ for seizing food, the organ of mastication, and, in felines, a weapon of offence and a means of destruction.

Tarde says: "The mandibles seem to shape themselves in accordance to the degree of intelligence; they become more finely modeled in proportion as the two social functions of speaking and smiling acquire a greater importance than the two individual functions of biting and masticating."

And Mantegazza says: "Cruelty has localised its imprint around the mouth, perhaps because killing and eating are two successive moments of the same event."

The Normal Visage

The visage is that part of the body which is preeminently human; being richly endowed with muscles, it represents the "mirror of the soul," through the expressions that it assumes according to the successive sentiments, passions and transitions of thought. The visage is a true mine of individual characteristics, by which different persons may be most easily and clearly distinguished from one another; while at the same time it bears the stamp of the most general characteristics of race, such as the form, the expression, the tone of complexion, etc., in consequence of which the face has hitherto held the first place in the classifications of the human races.

Even the peoples of ancient times, such as the Egyptians, made a physiognomical study of individual characteristics, founding a sort of empirical science that sought to read from the physiognomy the sentiments of the soul, the tendencies of character and the destiny of man. The visage also contains the greatest degree of attraction and charm, constituting that physical and spiritual beauty by which one person arouses in others feelings of sympathy and love. Oriental women cover their faces with thick veils through modesty, because the face reveals the entire feminine individuality, while the rest of the body reveals only the female of the human species, a quality common to all women.

The visage includes many important parts, which, by developing differently alter the physiognomy; the forehead, index of cerebral development, surmounts the face like a crown, revealing each individual's capacity for thought; furthermore, the visage contains all the organs of specific sense: sight, hearing, smell and taste, and hence all the "gateways of intelligence."

The organs of mastication, whose skeleton consists of the maxillaries and the zygomata which reinforce and anchor the upper maxillary, are the parts that constitute by far the greater portion of the facial mass. In fact, their limits (breadth between the two zygomata; breadth between the external angles of the mandible, chin) are the determining factors of the contour and general form of the face, which is completed by the soft tissues.

Forms of Face.—The first distinction in facial forms is that which is made between long or leptoprosopic faces and short or chameprosopic faces. Figs. 83 and 84 (facing page (258)) represent two faces having the same identical breadth between the zygomata or cheek-bones; the profound difference between them is due to their different height or length of visage.

Fig. 91.—Tetragonal face (parallelepipedoidal).

Fig. 92.—Pentagonal leptoprosopic face.

Fig. 93.—Pentagonal mesoprosopic face.

Fig. 94.—Face of inferior type prominence of the maxillary bones (prognathism).

The precise relation between height and breadth constitutes the index of visage, which is analogous to the index that we have already observed for the cranium.

Normally there is a correspondence in form between the cranium and the face; dolichocephalics are also leptoprosopic; and brachycephalics are chameprosopics; normally, also, mesaticephaly is found in conjunction with mesoprosopy; but owing to the phenomena of hybridism or pathological causes (rickets), it may also happen that such correspondence is wanting; and that we have instead, for instance, a leptoprosopic face with a brachycephalic cranium or vice versa.

Accordingly, long and short faces are characteristics of race almost as important as the cephalic index. But leptoprosopy and chamaeprosopy are not in themselves sufficient to determine the form of the face. On the contrary, in the case of living persons it is necessary also to take into consideration the contour of the visage, which contains characteristics relating to race, age and sex. The races which are held to be inferior have facial contours that are more or less angular; those that are held to be superior have, on the contrary, a rotundity of contour; men have a more angular facial contour, in comparison with that of women; while children have a contour of face that is distinctly rotund.

The angularities of the face are due to certain skeletal prominences, owing either to an excessive development of the zygomata (cheek-bones), or to a development of the maxillaries, which sometimes produce a salience of the lower corners of the mandible, and at others a prominence of the maxillary arch (prognathism).

Accordingly, the facial contours may be either rounded or angular, and that, too, independently of the facial type; because in either case the visage may be either long or short.

Depending upon the rounded facial contours, the visage may be distinguished as ellipsoidal or oval; we may meet with faces that are long, short or medium ellipsoids (leptoprosopic, chameprosopic, mesoprosopic faces), even to a point where the contour is almost circular: the orbicular face. Similarly, the oval faces may be classified as long, short and medium ovals. The so-called typical Roman visage is mesoprosopic, with an ellipsoidal contour. The faces of Cavalieri and of the Fornarina (Figs. 85, 87), celebrated for their beauty, are mesoprosopic ovals—and the exceptionally beautiful face of Maria Mancini is a mesoprosopic ellipse (Fig. 86).

Countenances with rounded and mesoprosopic contours belong to the Mediterranean race, and the more closely they come to the mean average of that type and to a fusion of contours, the more beautiful they are.

Faces with angular contours may be: triangular (due to prominence of the cheek-bones, or zygomata, and of the chin); tetragonal, further subdivided into quadrangular (chameprosopic) and parallelepipedoidal (leptoprosopic, due to prominence of zygomata and corners of mandible); and polygonal, which may be either pentagonal, formed by the protrusion of the zygomata, the angles of the mandible, and the chin; or hexagonal, formed by protrusion of the frontal nodules, the zygomata and the angles of the mandible.

There may occur, in certain types of face, a very notable prevalence of one part over another, so much so as to produce sharply differentiated and characteristic physiognomies. Thus, for example, a prevalence of forehead characterises the higher and superior type of the man of genius (compare the portrait of Bellini or of Darwin). On the other hand, a prevalence either of the cheek-bones, or the lower jaw, or the angles of the mandible, together with an accompanying powerful development of the masticatory muscles, produce three different types, all of them chameprosopic, which represent, in respect to the face, inferior racial types, differing from one another, but which are frequently met with (at least to a noticeable extent) even among our own people, as types of the lower-class face, precisely because of the preponderance of the coarser features.

Combined with the general type of face, there are certain specified particulars of form of the separate parts; as, for example, in the case of the ellipsoid or ovoid types of mesoprosopic face, which seem to have attained the most harmonic fusion of characteristics, and consequently the highest standard of beauty, the eyes are very large and almond-shaped (the Fornarina, Maria Mancini, Cavalieri); angular faces are characterised by a narrow, slanting eye, through all the degrees down to that of the Mongolian; faces of low type have an eye characterised less by its form than by its smallness. The nose also shows differences; it is long and narrow (leptorrhine) in the more leptoprosopic faces, and short, broad and fleshy (platyrrhine, flat-nosed) in chameprosopic faces, especially in the lower types; in mesoprosopic faces it assumes its proper proportions, and occurs as the last detail or crowning touch of harmony in the perfect faces of the above-mentioned women.

Fig. 95.—Hexagonal face.

Fig. 96.—Tetragonal face (square).

Fig. 97.—Faces of inferior type (cheek bones prominent).

Fig. 98.

When one starts to make the first draft of an ornamental design, it often happens that the proportional relations are based upon certain geometric figures that might be called the skeleton of the ornamental design that is being constructed from them. Accordingly, when an artist wishes to judge of the harmony of proportions in a drawing, a painting, or a statue, he often reconstructs with his eye a geometrical design that no longer exists in the finished work, but that must have served in its construction. In short, there exist certain secret guiding lines and points which the eye of the observer must learn to recognise, to trace and to judge.

This is the way that we should proceed in studying the facial profile.

Let us take or assume a person with the head orientated (i.e., with the occipital point resting against a vertical wall, and the glance level). The line uniting the point of the tragus (the little triangular cartilage projecting from the auricular foramen), with the juncture between the nasal septum and the upper lip, ought, in the case of an æsthetically regular face, to be horizontal. We may call this line the line of orientation. If it proves not to be horizontal, but oblique, slanting either forward (long nose) or backward (short nose), this in itself denotes an irregularity which is plainly perceptible, even to the casual observer. But it is only in exceptional cases that this line is not horizontal; its horizontality constitutes the norm, in our hybrid races.

Naturally, it is horizontal only when the head is orientated in the manner above stated. Hence in normal cases its horizontality is an index of the orientation of the head. The orientated head is perfectly upright; and the line in question marks its level.

Everyone knows that this position of the head is known as that of "attention" and constitutes the position which formerly only soldiers, but now school children as well, must assume as a sign of salutation and respect toward their superiors. It is also the anthropologically normal attitude (as we may see in statuary). And it is a known fact that it is a position exceedingly difficult to assume intentionally with absolute accuracy.

In fact, it corresponds to an attitude which has to be called forth by some inward stimulus of emotion, and for this reason I would call it the "fundamental psychological line." The man who is conscious of his own dignity, or who hopes for his own redemption; the man who is free and independent involuntarily holds his head orientated.

It is not the vain man, or the proud man, or the dreamer, or the bureaucratic official, whose head assumes this involuntary horizontal level that is characteristic of the most profound sentiments known to humanity; persons of such types hold their heads slightly raised and the line shows a slight backward slant.

The man who is depressed and discouraged, the man who has never had occasion to feel the deep, intimate and sacred thrill of human dignity, has on the contrary, a more or less forward slant in the psychological line of orientation.

Look at Fig. 99, which shows a very attractive group of Ciociari or Neapolitan peasants.

The man, or rather the beardless youth who is just beginning to feel himself a man, and therefore hopes for independence, holds his head proudly level; but the very pretty woman seated beside him holds her head gracefully inclined forward. For that matter, this is woman's characteristically graceful attitude. She never naturally assumes, nor does the artist ever attribute to her the proud and lofty attitude of the level head. But this graceful pose is in reality nothing else than the pose of slavery. The woman who is beginning to struggle, the woman who begins to perceive the mysterious and potent voice of human conflict, and enters upon the infinite world of modern progress, raises up her head—and she is not for that reason any the less beautiful. Because beauty is enhanced, rather than taken away, by this attitude which to-day has begun to be assumed by all humanity: by the laborer, since the socialistic propaganda, and by woman in her feministic aspirations for liberty.

Similarly in the school, if we wish to induce little children to hold their heads in the position of orientation, all that is necessary is to instil into them a sense of liberty, of gladness and of hope. Whoever, upon entering a children's class-room, should see their heads assume the level pose as if from some internal stimulus of renewed life, could ask for no greater homage. This, and nothing else, is certainly what will form the great desire of the teacher of the future, who will rightly despise the trite and antiquated show of formal respect, but will seek to touch the souls of his pupils.

Fig. 99.—A group of Roman peasants.

To return to our lines, it follows that the level orientation is the true human position for the head; it ought never to be abased nor carried loftily, because man ought never to make himself either slave or master; it is the normal line, because it should be that of the accustomed attitudes; because man cannot normally be perpetually meditating, with his gaze upon the ground, as if forgetful of himself and of his social ties; nor can he forever gaze at the heavens, as though drawn upward by some supernal inspiration. The normal attitude is that of the thinking man, who cannot lean either in the one direction or the other, because he is so keenly conscious of being in close connection with all surrounding humanity; and he looks with horizontal gaze toward infinity, as though studying the path of common progress.

Now, if from the metopic point of the forehead, we drop an imaginary perpendicular to the line of orientation, it ought to form, in projection, a tangent to the point of attachment of the nostrils. Observe the two lines traced on the profile of Pauline Borghese.

This line, if prolonged, passes slightly within the extreme angle of the labial aperture, and forms the limit of the chin (see the portrait of Cavalieri, Fig. 101). In this case the profile is eurygnathous.

When the line does not pass in the aforesaid manner, but the facial profile protrudes beyond it, we have a case of prognathism, which may be total, when the whole face projects; maxillary when the mandibles project, nasal when it is only the nose that projects, and mental (or progeneism) when it is only the chin that protrudes.

Figures 98, 100 and 103 represent forms of normal prognathism (related to race, Figs. 98, 100), and of pathological prognathism (Fig. 103, form associated with microcephaly). These two microcephalic profiles call to mind the muzzle of an animal; there is no erect forehead, the orbital arch forming the upward continuance; the nose is very long and almost horizontal to the protruding jaw; the fleshy lips constitute in themselves the anterior apex of the visage; while the chin recedes far back beneath them.

But leaving aside these exceptional profiles, which serve by their very exaggeration to fix our conception of prognathism, let us examine the series of profiles in Fig. 100, which include some forms more or less peculiar, and others that are more or less customary, of prognathism; forms that serve to characterise the physiognomy.

Annotate

Next Chapter
CHAPTER III THE THORAX
PreviousNext
Public domain in the USA.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org