P. A.—St 156; Ct 93.—Endocarditis; insufficient heart-action.
Z. C.—St 168; Ct 95.—Cerebral hyperemia of an apoplectic nature. Hypertrophy of the left ventricle of the heart. Polysarcous (gluttonous) eater.
B. G—St 166; Ct 104.—Diabetic, obese, subject to diabetic ischialgia (neuralgia), frequent recurrence of gravel in the urine. Tendency to excesses of the table.
D. G.—St 160; Ct 96.—Polysarcia, the first symptoms of which appeared in early youth. At the age of sixteen, suffered from all the discomforts of obesity. Shows atheroma (fatty degeneration) of the aorta, irregular heart-action, hypertrophy and enlargement of the heart.
In this brachyscelous type it may happen either that the whole trunk (that is, both the thoracic and abdominal cavities) is in excess, or else that the excessive development is confined to the abdomen. This latter case is very frequent, and may easily be found even in early childhood. Such children are hearty eaters, are very active and, for this reason, the pride and joy of their parents. Nevertheless, there are many signs that should give warning of constitutional defects; constant digestive disturbances (diarrhœa), frequent headaches, pains in the joints, apparently of a rheumatic character, tendency to pains in the liver which is excessively enlarged; excess of adipose tissue; a tendency to fall ill very easily, of maladies that are almost always happily overcome (but the truly robust person is not the one who recovers from illness, but the one who does not become ill), and finally an excessively lively disposition, irritability and above all, impulsiveness.
Such individuals ought, like the macrosceles, to live under the necessary and perpetual tyranny of a hygienic régime, adapted to correct or to diminish the morbid predispositions associated with the organism. A special dietetic, a regular hydrotherapic treatment, a moderate gymnastic exercise designed to direct the child's motive powers, and thus to prepare the man for that form of existence to which it is necessary for him to subject himself, if he does not wish to shorten his own life, or at least his period of activity—all these things are so many duties which the school ought in great part to assume.
In this way we have briefly considered the abnormal types of brachyscelia and macroscelia, which by their very constitution are predisposed to incur special and characteristic forms of disease, which may be avoided only by subjecting the organism to a special hygienic regimen. Men cannot all live according to the same rules.
Types of Stature in Criminals
In these latter times, some very recent researches have been made by applying De Giovanni's method to the anthropological study of criminals, especially through the labours of Dr. Boxich. He has found that the great majority of parasitic criminals, thieves for example, are macrosceles. They exhibit the stigmata already revealed by Lombroso: great length of the upper limbs, with elongated hands; furthermore, a narrow chest and a small heart, insufficient for its vital function; such individuals are singularly predisposed to pulmonary tuberculosis, and hence in their physical constitution they are already stamped as organisms of inferior biological value—having little endurance and almost no ability as producers—consequently they are forced to live as they can, that is like parasites, profiting by the work of others. On the contrary, the great majority of criminals of a violent character present the brachyscelous type: the thorax is greatly developed, the heart hypertrophic, the arterial circulation superabundant. This class of criminals, including a large proportion of murderers, have a special tendency to act from impulse, corresponding to their large heart which sends an excess of blood pulsing violently to the brain, obscuring the psychic functions; or, in the speech of the people, such a man has "lost his reason," "the light goes from the eyes when the blood goes to the brain."
Here are some notes regarding these two different types: we will select as measures of comparison the stature and the weight, bearing in mind that in the macrosceles the weight is scanty and that the opposite is true of the brachysceles, while normally there ought to be a pretty close correspondence between the weight in kilograms and the centimetres of stature over and above one metre.
Types of Non-violent Criminals (Parasites)
Case No. 24.—St. 168; Wt. 56. Farm steward, three years' sentence for theft. Pallid complexion, visible veins, scant muscles. Heart small and weak, pulse feeble and slow.
Case No. 34.—St. 175; Wt. 61. Baker, comfortable financial circumstances, has received a number of sentences for theft, amounting altogether to ten years. Is twenty-four years of age. Cyanosis of the extremities (bluish tinge, due to excessive venous circulation). Cardiac action feeble. Scant muscles.
Case No. 43.—St. 156; Wt. 51. Peasant. Straitened circumstances. Four years' sentence for theft. Rejected by the army board for defective chest measurement. Dark complexion. Extensive acne. Scant muscles. Bronchial catarrh. Has had hemoptysis (spitting of blood). Cardiac action weak. Pulse very feeble.
Case No. 52.—St. 173; Wt. 66. Book-binder. Prosperous circumstances. Four years' sentence or thereabouts, for theft; age, twenty-four. Conjunctivitis and blepharitis from early childhood. Frontal and parietal nodules prominent. Muscles scant; cardiac action weak; lymphatic glands of the neck enlarged.
The following is an example of the typical thief:[12]
St. 162; Wt. 46.—Exceedingly small heart, feeble cardiac action. Suffers from chronic bronchial catarrh. Cranial nodules very prominent. Began as a small child to steal in his own home, and since then has received sentence after sentence for theft, up to his present age of twenty-nine.
Types of Violent Criminals (Assault, Mayhem, Homicide)
Case No. 54.—St. 157; Wt. 62. Peasant. Good financial circumstances. Condemned to thirty years in prison for homicide. Well-developed muscles. Blood vessels congested. Strong heart action; the pulsation extends as far down as the epigastrium. Ample pulse.
Case No. 60.—St. 156; Wt. 70. Shoemaker. Bad financial circumstances. Condemned to fifteen years' imprisonment for homicide, after having been previously convicted three times for theft. The chest circumference exceeds one-half the stature by 11 centimetres. Subject to frequent pains in the head. Good muscles. Corpulent. Full pulse. (It should be noticed that the florid complexion, accompanying this type of stature, persists in spite of straitened circumstances!)
Case No. 85.—St. 168; Wt. 70. Turner in iron. Comfortable circumstances. Sentenced to thirty years in prison after one previous conviction for criminal assault. Ruddy complexion. Veins not visible. Abdomen very prominent. Gastrectasia (dilation of the stomach). Entire cardiac region protuberant. Laboured breathing. Cardiac action abundant.
Hence we perceive, in the etiology of crime, the importance of the organic factor, connected directly with the lack of harmony in the viscera and their functions, and consequently accompanied by special morbid predispositions.
As a result of this line of research, criminality and pathology are coming to be studied more and more in conjunction. For that matter, it was already observed by Lombroso that in addition to the various external malformations found in criminals, there were also certain anomalies of the internal organs, and a widespread and varied predisposition to disease. In short, his statistics reveal a prevalence of cardiac maladies and of tuberculosis in criminals, as well as a great frequency of diseases of the liver and the intestines.
Extreme or Infantile Types, Nanism and Gigantism, Extra-social Types
Whenever the disproportion between the bust and the limbs surpasses the extreme normal limits, the whole individual reveals a complex departure from type. Thus, for example, in connection with extreme brachyscelia, there exists a characteristic form of nanism (dwarfishness), called achondroplastic nanism, in which, although the bust is developed very nearly within normal limits, the limbs on the contrary are arrested in their growth so as to remain permanently nothing more than little appendages of the trunk. This calls to mind the fœtal form of the new-born child, and the resulting type, because of this morphological coincidence, is classed among the infantile types.
Achondroplastic nanism is associated with a pathological deformity due to fœtal rickets. It is not only the child after birth, but the fœtus also which, during its intrauterine life, may be subject to diseases. Rickets (always a localised disease, usually attacking some part of the skeleton) in this case fastens upon the enchondral cartilages of the long bones. As we know, the long bones are composed of a body or diaphysis and of extremities or articular heads, the epiphyses. Now, these different parts, which form in the adult a continuous whole, remain separate throughout the fœtal and the immediate post-natal period: so that the heads of the humerus and the femur, for example, in the case of the new-born child, are found to be joined to the diaphysis by cartilages (destined to ossify later on), which are the chief seat of growth of the bones in the direction of length. Well, in these cases of pre-natal rickets, the union of the bony segments takes place prematurely, and since the bones can hardly grow at all in length, they develop in thickness, and the result is that the limbs remain very short and stocky. Meanwhile the bust, the bones of which have in no way lost their power of growth, develops normally.
Now, these dwarfs, who have abundant intelligence, because they have the essential parts of stature in their favour, constituted the famous jesters of the mediæval courts, whose misfortune served to solace the leisure hours of royalty. Paolo Veronese went so far as to introduce a dwarf buffoon, of the achondroplastic type, into his famous painting, The Wedding at Cana.
Conversely, in connection with an exaggerated macroscelia, we have gigantism.
Ordinarily, a giant has a bust that is not greatly in excess of normal dimensions. The limbs, on the contrary, depart extremely from the normal limits, in an exaggerated growth in the direction of length: so much so that the bodies of giants present the appearance of small busts moving around on stilts.
Nevertheless, many different forms of gigantism occur. The pathology of this phenomenon is quite complex; but we can not concern ourselves with it here. It is a scientific problem of no immediate utility to our pedagogic problems. Dwarfs and giants, whatever their type and their pathological etiology, constitute extra-social individuals, who have been at all times excluded from any possibility of adaptation to useful labour, and employed, whether in the middle ages or in the twentieth century, to a greater or less extent as a source of amusement to normal beings, because of their grotesque appearance, either at court or in the theatres, or in moving pictures, or (in the case of giants) as figures suited to adorn princely or imperial gateways. These individuals are as completely independent of the social conditions of the environment in which they were born as if they were extraneous to humanity. In relation to the species, they are sterile.
From the biological side, a consideration of these types serves merely as an illustration of an important law: the essential part of the organism (the vertebral column) is less variable than the accessory parts (the limbs).
Summary of the Types of Stature
According to the relative development of bust and limbs we have distinguished three types, the macrosceles, the brachysceles and the mesatisceles, within their respective limits of oscillation.
Since the type of stature gives us a proportion between the different parts of an individual, it constitutes a fundamental criterion for a morphological judgment of the personality. That is, it leads to a diagnosis of the individual constitution, with which are associated not only the "character" but also certain predispositions to disease.
A knowledge of these types shows us the necessity we educators are under of taking into consideration the individual pupils, each of whom may have separate needs, tendencies and forms of development; and of demanding separate schools, in which even the methods of moral education must differ. Because men are not only not all adapted to the same forms of work, but they are not even all adapted to the same standards of morality. And since it is our duty to assume the task of aiding the biological development and the social adaptation of the new generations, it will also be part of our task to correct defective organisms, and at the same time to correct the types of mental and moral inferiority.
In the following chart we may summarise the points of view from which we have studied the types of stature:
SYNOPTIC CHART
Summary of the Scientific Principles Illustrated in the Course of our Discussion
Biological Laws.—a. Growth is not only an augmentation in volume, but also an evolution in form.
b. The more essential parts vary less than the accessory parts in the course of their transformations.
The Index.—The index is the mathematical relation between the measurements belonging to the same individual, and as such it gives us an idea of the form; since the form is determined by the relations between the various parts constituting the whole.
The Stature
While the figure and the type of stature tend to delineate the individual considered by himself, the different measurements considered separately may guide us in our study of individuals in their relation to the race and the environment.
Among the measurements of the form, we will limit ourselves to a study of the stature and the weight, which serve to give us respectively the linear index of development and the volumetric estimate of the body taken as a whole. We shall reserve the study of the other measurements, such as the total spread of the arms and the perimeter of the thorax, until we come to the analytical investigation of the separate parts of the body (limbs, thorax).
The stature is expressed by a linear measure determined by the distance intervening in a vertical direction between the plane on which the individual is standing in an erect position and the top of his head.
It follows that the stature is a measurement determined by the erect position; on the other hand, when a man is in a recumbent position, what we could determine would be the length of body, which is not identical with the stature.
In fact, a man on foot, resting his weight upon articulations that are elastic, and therefore compressible, is a little shorter than when he is recumbent.
If we examine the skeleton (see Fig. 9), we discover that the single synthetic measure that constitutes the stature results from a sum of parts that differ greatly from one another. To be specific, it is composed of the long and short bones of the lower limbs; of flat bones, such as the pelvis and the skull; of little spongy bones, such as the vertebræ; all of which bones and parts obey different laws in the course of their growth. Furthermore, intervening between these various bones are soft, elastic parts, known as the articulations, which, starting from below, succeed each other in the following order:
- Calcaneo-astragaloid, between the calcaneus and the superimposed astragalus.
- Tibio-astragaloid, between the astragalus and the superimposed tibia.
- Of the knee, between the tibia and the femur.
- Of the hip, between the femur and the os innominatum.
- Sacro-iliac, between the os iliacum and the sacrum.
- Sacro-vertebral, between the sacrum and the last lumbar vertebra.
- Of the vertebræ, consisting of 23 intervertebral disks, that is to say interposed between the vertebræ, which include the following: 5 lumbar, 12 thoracic, 7 cervical.
- Occipito-atloid, between the first cervical vertebra, called the atlas and the os occipitale of the cranium.
Accordingly, there are thirty articulations in all; and of these, 23 are the intervertebral disks, which constitute, taken together, a fourth part of the complex height of the vertebral column.
Furthermore, the height of the body cannot be considered simply the sum of the component parts, since these are not superimposed in a straight line. As a matter of fact, if we examine the vertebral column, we see that it is not straight as in the case of animals, but exhibits certain curves that are characteristic of the human species, and must be taken into consideration in their relation to the erect position. In fact, the vertebral column presents two curvatures, the one lumbar, and the other cervical, which together give it the form of an S. These curvatures are acquired along with the erect position, and are not innate; one of the points of difference between the skeleton of the new-born child and that of the adult is precisely this, that the former has a straight vertebral column.
A fact of no small importance to note, since in the course of growth a certain determined form of normal curve, and no other, ought to establish itself; otherwise, abnormal deviations in the vertebral column will become established. And for the very reason that it is plastic and destined to assume a curve, the vertebral column may very easily be forced into exaggerating or departing from its morphological destiny. In such a case, the resulting stature would be inferior to what it should normally have been.
Accordingly, the stature is the resultant of the sum of anatomical parts and of morphological conditions.
Hence it is a linear index not only of biological man, that is, of man considered in relation to his racial limitations; but also of social man, that is, of man as he has developed in the struggle for adaptation to his environment.
The limits of stature, according to race. Stature is an anthropological datum of great biological value, since it is a definite racial characteristic and is preserved from generation to generation by heredity. The first distinguishing trait of a race is the height of the body in its natural erect position. It is also the first characteristic that strikes us when a stranger comes toward us for the first time. And that is why we make it the leading descriptive trait: a person of tall, or of low stature. If, for a moment, we should picture to ourselves the legend of Noah's Ark—quite incredible, because emigration and embarkation of all the known species would have required more than a century of time (it is enough merely to think of the embarkation of the tortoises and the sloths!), and the necessity of an ark as big as a nation, what must inevitably have struck Noah and his sons would have been the stature of the individuals belonging to each separate species.
The stature is the linear index of the limit of mass.
Among the human races the variations in stature are included between fairly wide oscillations: coming down to facts, the average stature of the Akkas is 1.387 m. (4 ft. 6½ in.) for the males; and that of the Scotchmen of Galloway is 1.792 m. (5 ft. 10½ in.). Accordingly between the average heights of the two races that are considered as the extremes, there is a difference of 40 cm. (15¾ in.); but since the averages are obtained from a complex mass of normal measurements, some of which are above and others necessarily below the average itself, we may assert that the "normal human individuals" may differ in stature to an extent of more than half a metre; the oscillations of normal individuals on each side of the racial average being estimated at about 10 cm. (3.937 in.).
If we should see a little Akka 4 ft. 4 in. (1.33 m.) in height alongside of a Scotchman 6 ft. (1.83 m.) high we should say "a dwarf beside a giant." But such terms are pathological and should never be employed to indicate normal individualities. As a matter of fact dwarfs and giants are as a class extra-social and sterile; normal individuals, on the contrary, represent the physiopsychic characteristics of their respective races. Consequently we may say that normal people have a low stature, or a high stature; or if it is a question of extremely low stature (such as that of the Akkas) we may make use of the term pigmies or of the pigmy race, in speaking of such individuals. Sergi has proved the existence, among the prehistoric inhabitants of Europe, of various pigmy races.
In the field of anthropology the scientific terminology ought always to be based upon certain determined limits. The authorities indicate the normal extremes of individual stature, beyond which we pass over the into realm of pathology, incompatible with the survival of the species; and even in the pathological cases they determine the extreme limits, obtained from the individual monstrosities that have actually existed in the course of the centuries, and that seem to indicate the furthest limits attained by the human race.
Deniker, in summing up the principal authorities, assigns the following limits:
| Statures less than 1.25 m. | Normal statures, range of oscillations among the races | Statures from 2 m. upward | |||||
|---|---|---|---|---|---|---|---|
| Lowest individual extreme | Exceptionally low individual stature | Extreme low racial average | Extreme high racial average | Exceptionally high individual stature | Highest individual extreme | ||
| Nanism | 1.25 m. | 1.35 m. | Akkas 1.387 m. | Scotchmen of Galloway 1.792 m. | 1.90 m. | 1.99 m. | Gigantism |
The pathological extremes that would seem to indicate the limits of stature compatible with human life would seem to be on the one hand the little female dwarf, Hilany Agyba of Sinai, described by Jaest and cited by Deniker,[13] 15 inches high (0.38 m.—the average length of the Italian child at birth is 0.50 m. = 19½ in.), and on the other, the giant Finlander, Caianus, cited by Topinard[14], 9 ft. 3½ in. in height (2.83); the two extremes of human stature would accordingly bear a ratio of 1:7. On the other hand, Quétélet[15] gives the two extremes as being relatively 1:6—namely, the Swedish giant who was one of the guardsmen of Frederick the Great, and was 2.523 m. tall (8 ft. 3 in.); and the dwarf cited by Buffon, 0.43 m. in height (16¾ in.).
When there is occasion for applying the terms tall or low stature to individuals of our own race, it is necessary at the same time to establish limits that will determine the precise meaning of such terms. Livi[16] gives as the average stature for Italians 1.65 m. (5 ft. 5 in.), and speaking authoritatively as the leading statistician in Anthropology, establishes the following limits:
STATURE OF ITALIANS (LIVI)
Averages Determining The Terminology of Stature
| 1.60 m. and below, low statures. | 1.65 m. and all between 1.60-1.70, mean statures | 1.70 m. and above, tall statures. |
The individual extremes among the low statures tend to approach the average stature of the Japanese race (1.55 m.), and those among the high statures approach the Anglo-Saxon average (the Scotch = 1.79 m.)
There is much to interest us in studying the distribution of statures in Italy.
In Livi's great charts, he has marked in blue those regions where the prevailing percentage of stature is high (1.70 m. and upward), and in red those where the low statures prevail (1.60 m. and below); and the varying intensity of colouration indicates the greater or lesser prevalence of the high or low statures.
Thus it becomes evident in one glance of the eye that tall statures prevail in northern Italy and low statures in the south; while the maximum of low stature (indicated by the most intense red) is found in the islands, and especially in Sardinia.
In the vicinity of the central districts of Italy (the Marches, Umbria, Latium) the two colours fade out; this indicates that here all notable prevalence of stature, either tall or low, ceases; consequently we have here, as the prevailing norm, the mean stature (1.65 m.).
Anyone wishing to analyse the natural distribution of stature, has only to study these charts by Livi, which are worked out with great minuteness. If a study of this sort, extending over the entire peninsula, seems too great an undertaking, it is at least advisable for a teacher to acquaint himself with the local distribution of stature; in order that when it becomes his duty to judge of the stature of pupils in his school he will have the necessary idea regarding the biological (racial) basis on which so important an anthropological datum can oscillate.
Livi's charts, based upon the male stature, correspond almost perfectly with my own regional charts based upon the average statures of the women of Latium. Both Livi and I find that in the region of Latium the tall statures prevail north of the Tiber, especially toward the confines of Umbria; while the lowest statures are found in the neighbourhood of the valley of the Tiber, toward the sea (Castelli Romani). That is to say, the stature becomes lower from north to south, and from the mountains toward the sea. Furthermore, there exist certain nuclei of pure race, such as at Orte and in Castelli Romani, where we may find the extremes of average stature, which for women are found to be 1.61 m. at Orte, and 1.47 m. at Castelli Romani; while the extreme individual statures, according to my figures, oscillate between 1.42 m. (Castelli) and 1.70 m. (Orte). It would be helpful to the teachers of Rome and Latium, if they would acquire some idea regarding the racial types of the district, by studying my work on the Physical Characteristics of the young Women of Latium, which is the only work on regional anthropology taken directly from life that so far exists in anthropologic literature.[17]
The Stature in Relation to Sex.—It is sufficient to point out that the stature varies normally between the sexes, so that the average figures differ by about 10 centimetres (nearly 4 in.) in the direction of a lower stature for woman.
Variations in Stature Through the Different Ages
Notwithstanding that growth is an evolution, it manifests itself also by an absolute augmentation of mass; and the linear index of such augmentation is given by the growth in stature, or by its variations at different ages.
This exceedingly important measurement ought to be taken in the case of all pupils; and undoubtedly in the course of time anthropometry will form a part of our school equipment; because, by following the increase of stature in a child, we follow his physical development.
In Chapter VII, in which the technique of the stature is discussed, there is a graphic representation of the annual increase of stature in the two sexes; the upper parabolic line refers to the male sex, and the lower one to the female. On the vertical line are marked the measures of growth, from the base upward, and on the horizontal line the ages. All the dotted vertical lines which rise from the horizontal, each corresponding to a successive year of life, and stop at the parabolic line, represent the relative proportion of stature from year to year; while the parabola which unites the extremities of such lines may be regarded as a line drawn tangent to the top of the head of an individual through the successive periods of his life.
If we analyse this table, we find that the greatest increase in stature takes place during the first year; in fact, a child which at birth has an average length of body of 0.50 m. for males, and 0.48 m. for females (the new-born child does not have stature, but only length of body, since it has not yet acquired an erect position) has by the end of the first year augmented the length of body by 20 centimetres, which gives an average length of 0.70 m. In no other year of life will the stature acquire so notable an increase; it is very important for mothers to watch the growth of the child during this first year of its life; and the following figures may be useful for comparison:
It will be seen that the maximum increase takes place during the first four months—especially in the first month (4 cm. = 1.57 in.) the rate diminishing from this point up to the fourth month (2 cm. = 0.78 in.), after which the monthly increase remains steadily at one centimetre (0.39 in.).
Fig. 22.—New-born child, seen from in front and from behind. (Stratz.)
1 year. 8 months. 4 months. at birth.
Fig. 23—Skeleton of a child from birth to the age of one year.
GROWTH IN LENGTH OF BODY DURING THE FIRST YEAR OF LIFE
(From Figueira)
| Age in months | Length of body in metres | Monthly increase |
|---|---|---|
| 0 | 0.50 | 0 |
| 1 | 0.54 | 4 |
| 2 | 0.57 | 3 |
| 3 | 0.60 | 3 |
| 4 | 0.62 | 2 |
| 5 | 0.63 | 1 |
| 6 | 0.64 | 1 |
| 7 | 0.65 | 1 |
| 8 | 0.66 | 1 |
| 9 | 0.67 | 1 |
| 10 | 0.68 | 1 |
| 11 | 0.69 | 1 |
| 12 | 0.70 | 1 |
The same facts appear from the combination picture given by Stratz, showing an infant's skeleton at four-month intervals from birth to the end of the first year.
During the second year of life, the increase in stature is about one-half that of the preceding year, that is, about 10 cm. (4 in.), so that at the end of the second year the child attains a height of about 80 cm. (31½ in.). After this, the annual increase diminishes in intensity (see "Figures of the increase of stature according to Quétélet and other authors," in the technical part, Chapter VII), as is shown by the horizontal dotted lines, which, starting from a vertical line at points corresponding to the height of various statures, represent by the intervals of space between them the successive growth from year to year.
This increase is not regular, but proceeds by periodic impulses that in early childhood seem to recur at intervals of three years.
Thus for example the increase
- between 0- 3 years of age is successively 20, 10, 6 cm.
- between 3- 6 years of age is successively 7, 6, 5 cm.
- between 6- 9 years of age is successively 7, 6, 5 cm.
- between 9-12 years of age is successively 6, 4, 3 cm.
Accordingly we have a triennial rhythm, decreasing throughout the whole period of childhood; the maximum increase is in the first triennium, the second and third periods of three years correspond exactly, while the last period shows a lowered rate of increase.
At this point the period of approaching puberty begins (13 years for boys), after which the rate of increase becomes more rapid than it had been during the second or third period, attaining its maximum during the years 13-15; to be specific, the rate from 13 to 18 is successively 4, 8, 7, 5, 6, 3 cm.
When the period of puberty is ended (18 years), the rate of growth is much slower; in fact, during the two following years (18 to 20) it hardly attains one centimetre.
Nevertheless, the stature continues to increase up to the twenty-fifth year; according to Quétélet's figures, the average male stature at the age of eighteen is 1.70 m. (in Belgium) and at twenty-one it is 1.72 m.
From twenty-five to thirty-five the stature remains stable; this is the adult age, the full attainment of maturity; at the age of forty the period of involution insensibly begins, and after fifty in the case of women, and sixty in the case of men, the stature begins insensibly to decrease; a decrease which becomes more marked with the advance of age, corresponding to an anatomical diminution of the soft parts interposed between the bones in the sum of parts that make up the stature; more especially the intervertebral disks; and in connection with this phenomenon the vertebral column tends to become more curved.
According to Quétélet's figures, at the age of eighty the average male stature is 1.61 m. (5 ft. 3-2/5 in.), a stature corresponding to that of the age of sixteen.
Accordingly, the variations in stature throughout the different periods of life are neither a growth nor an evolution, but a parabolic curve, including evolution and involution. This curve represents the true human stature; the measurements taken successively from year to year representing nothing more than transitory episodes in the individual life.
Man, as he really is, we may represent by portraits taken successively from time to time, from his birth until his death; the occasional photograph which it is the custom to have taken represents nothing; following no rule, it seizes a fugitive instant in the life of an individual, who is never a fixed quantity but is constantly in transition during the whole course of his existence. So that the habit of taking a picture annually on a child's birthday is an excellent one if we wish to preserve a true likeness; and this practice is recommended in pedagogic anthropology, when it is desired to preserve the biographic history of the pupil.
It is interesting to study, side by side with the growth of stature and the marked rhythms and periods that constitute its laws, the phenomenon of general mortality in its relation to age.
Lexis gives the following curve of general mortality: the horizontal line marks the years and the vertical line the corresponding number of deaths, while the curved line shows the progress of mortality, and the highest points in the curve indicate the maximum mortality. It is highest of all during the first year and in general during early childhood, and is steadily lowered to a point corresponding to the ages from ten to thirteen, after which it rises again.
Fig. 24.—Curve of general mortality (Lexis).
Let us examine the curve up to this point, since it has a bearing upon our school work. We can prove that the maximum mortality corresponds to the maximum individual growth; in other words, an organism in rapid evolution is exposed to death, its powers of immunity to infective diseases are weakened; it constitutes what in medical parlance is known as a locus minoris resistentiæ.
In that period of calm in growth, which would seem to be a repose preceding the evolution of puberty, mortality is at the lowest; only to rise again rapidly during the period of puberty; while the rise becomes less rapid after the eighteenth year, notwithstanding that after that age mankind in general are exposed, in their struggle for existence, to many causes of death that did not exist during the preceding years. Toward the age of seventy the line of mortality attains another apex, because the age of normal death is reached; after which it drops precipitously because of the lack of survivors.
From these facts we may deduce certain very important principles that throw useful light upon pedagogy: there are certain ages at which even the strong are weak; and their weakness is of such a nature that it exposes the individual to death.
Now, whenever the phenomenon of mortality occurs it is always an indication of impoverishment in the survivors. For example, of every one person that dies, many persons have been ill who have recovered from their illness; but there are still many others who, although they did not actually fall ill, were weakened even though they passed through the peril unharmed.
In short, for each death, which represents a final disaster, there are many victims. And whenever there is a rise in the phenomenon of mortality in connection with any one age, it is our duty to give special attention to those individuals who are not only weak in themselves, but whom the social causes affecting them tend to weaken still more and push onward toward illness and death. Whenever there are many deaths, there are undoubtedly also many sufferers.
Now, in pedagogy we have no criterion to guide us in this matter of respecting the weaknesses characteristic of the various ages, as, for example, that of early infancy and of the age of puberty.
With the most cruel blindness we punish and discourage the lad who, having reached the age of puberty, no longer makes the progress in his studies that rendered him the brilliant champion during the period of physiological repose in his growth; and instead of regarding this as a psychic indication of a great physiological transformation that it is necessary to protect, we urge on the organism to enforced effort, without even suspecting that, in proportion to the degree of resistance of our pupil, we may be doing our share to induce in him a permanent weakness, or an arrest of development, or disease and death.
Our responsibility as educators is great, because we have the threads of life entrusted to our care; man represents a continuous transition through successive forms, and each following period has been prepared for by the one preceding.
Whenever we have the misfortune to concur in weakening a child, we touch that parabolic line traced in the graphic chart of stature, and standing as an index of the life of the body, and we give it a shock throughout its whole length; it may either be shattered or be brought down to a lower grade.
But the life of an individual does not contain merely that individual alone; the cycle of the stature with its violent period of puberty and the perfect physiological repose corresponding to the years from 25 to 36, or even 45, indicates the eternity of the individual in the species: his maturity for reproduction. Man in his progress through the different levels of height, as indicated on the graphic chart of stature, does not pass through them without reproducing himself, save in exceptional cases; he commences the ascent alone, but in his descent he attains the majesty of a creator who leaves behind him the immortal works of his own creation. Well, even the capacity of normal reproduction, and of begetting a strong species, is related to the normal cycle of life: whoever weakens a child and puts a strain upon the threads of its existence, starts a vibration that will be felt throughout posterity.
The parabolic cycle of stature shows us which is the most favourable period for the reproduction of the species; it is undoubtedly that period that stands at the highest apex of the curve, and at which the organism has reached an almost absolute peace, as if forgetful of itself, in order to provide for its eternity. When it has completed its period of evolution, during which the organism shows that it has not yet matured; and before the commencement of involution, in which period the organism is slowly preparing for departure—that is the moment when man may or rather ought to procreate his species.
Careful forethought not to produce immature or feeble fruit, will form part of the coming man's regard for his posterity. A new moral era is maturing, that is giving birth to a solidarity, not only between all living beings, but including also those future beings who are as yet unborn; but for whose existence the living man of to-day is preparing through his care of his own strength and his own virtue. To have intentionally begotten a son better than himself will be a proud victory for the man who has attained the higher sexual morality; and such pride will be no less keen than that of the artist, who by perfecting his marvelous talents has created a masterpiece.
The statistics collected by Quétélet demonstrate that "too precocious marriages either occasion sterility or produce children that have a smaller probability of living."
They prove furthermore that the number of children who die is largest in marriages contracted at the age of sixteen or earlier, and becomes lowest among the children born of marriages contracted between the years of 29 and 32. During these years also the parents are most fertile: as is shown by the following tables:
SANDLER'S FIGURES BASED ON THE FAMILIES OF ENGLISH PEERS
| Age of parents at marriage | Percentage of deaths of children before attaining marriageable age | Average births to each marriage | Percentage of births to each death |
|---|---|---|---|
| 15 years | 35 | 4.40 | 0.283 |
| 16-19 years | 20 | 4.63 | 0.208 |
| 20-23 years | 19 | 5.21 | 0.188 |
| 24-27 years | 12 | 5.43 | 1.171 |
| Age at the time of child's birth | Percentage of deaths to each birth | Average number of births in one year of marriage |
|---|---|---|
| 16 years | 0.44 | 0.46 |
| 17-20 years | 0.43 | 0.50 |
| 21-24 years | 0.42 | 0.52 |
| 25-28 years | 0.41 | 0.55 |
| 29-32 years | 0.40 | 0.59 |
The results of a recent research show that famous men have hardly ever been the first-born, and that the great majority were begotten of parents who were at the time between the ages of 25 and 36 years.
Variations of Stature with Age, According to the Sexes.—The general laws of the growth and involution of stature are pretty nearly the same for the two sexes. The female stature, beginning at birth, averages throughout life somewhat less than the male.
But since the development of puberty takes place earlier in woman than in man, the female child manifests the characteristic increase in stature at an earlier age than the male; consequently at that age (about eleven) she overtakes him, and for the time being both boy and girl are equal in stature. But as soon as the boy enters upon the period of puberty, he rapidly surpasses the girl, and his stature henceforth steadily maintains a superiority of about ten centimetres (nearly four inches), as is shown by the deviations between the two parabolic curves, representing the variations of stature in the two sexes. Even the involution of stature occurs precociously in women, as compared with man.
Variations in Stature due to Mechanical Causes of Adaptation to Environment
Variations due to Mechanical Causes. Transitory and Permanent Variations. Deformations.—The individual stature is not a fixed quantity at all hours of the day; but it varies by several millimetres under the influence of mechanical causes connected with the habits of daily life. In the morning we are slightly taller than at night (by a fraction of a centimetre): in consequence of remaining on foot a good deal of the time during the day, our stature is gradually lowered. This is contrary to the popular belief that "while we stand up our stature grows."
As a matter of fact, in the erect position the soft tissues that form part of the total stature are under constant pressure; but being elastic, they resume their previous proportions after prolonged rest in a horizontal position.
Consequently at night, especially if we have taken a long walk, or danced, we are shorter than in the morning after a long sleep; the act of stretching the limbs in the morning completes the work of restoring the articular cartilages to their proper limits of elasticity. Nevertheless, according to the mechanical theory accepted by Manouvrier, persons who are habituated from childhood to stand on foot much of the time (labourers) interfere with the free growth of the long bones in the direction of length and at the same time augment the growth in thickness; hence the skeleton is rendered definitely shorter in its segments as well as in its bones (i.e., a shallower pelvis, shorter limbs, etc.). The result is a stocky type with robust muscles: the europlastic type, which is found among labourers. On the contrary, a person who spends much time reclining on sofas among cushions, and taking abundant nutriment, is likely to tend toward the opposite extreme; bones long and slender, the skeleton tall in all its segments, the muscular system delicate; this is the macroplastic or aristocratic type. According to Manouvrier, when a person has a long, slow convalescence after a protracted infectious malady such as typhoid, recumbent much of the time and subjected to a highly nutritive diet, it may happen, especially if he has reached the period of puberty at which a rapid osteogenesis naturally takes place in the cartilages of the long bones, that he will not only become notably taller, but will even acquire the macroplastic type.
The macroplastic type is artistically more beautiful, but the europlastic type is physiologically more useful.
It is not only the erect position that tends to reduce the stature, but the sitting posture as well. In fact, whether the pelvis is supported by the lower limbs or by a chair, the intervertebral disks are in either case compressed by the weight of the bust as a whole. If, for example, children are obliged, during the period of growth, to remain long at a time in a sitting posture, the limbs may freely lengthen, while the bust is impeded in its free growth, and the result may be an artificial tendency toward macroscelia. This is why children are more inclined than adults to throw themselves upon the ground, to lie down, to cut capers, in other words to restore the elasticity of their joints, and overcome the compression of bones and cartilages. Accordingly, such variations of stature recur habitually and are transitory, and since they are associated with the customary attitudes of daily life, they are physiological.
But if special causes should aggravate such physiological conditions, and should recur so often as not to permit the cartilages to return completely to their original condition, in such a case permanent variations of stature might result, and even morphological deviations of the skeleton. For example, a porter who habitually carries heavy weights on his head, may definitely lower his stature; and in the case of a young boy, the interference with the growth of the long bones through compression exerted from above downward, may produce an actual arrest of development of the limbs and spinal column, presenting all the symptoms of rickets. Witness certain consequences of "child-labour" chief among which must be mentioned the deformities of the carusi [victims of child-labour, who from an early age toil up the succession of ladders, bearing heavy burdens of sulphur from the mines below.[18]] in the Sicilian sulphur mines.[19] As a general rule, all cramped positions that are a necessary condition of labour, if they surpass the limits of resistance and elasticity of the human frame, and especially if they operate during periods of life when the skeleton is in process of formation, result in deformities, and when the skeleton is deformed, the internal organs and hence the general functional powers of the whole organism, suffer even greater alteration.
Fig. 25.—Vincenzo Militella of Lereata, a Sicilian caruso.
Fig. 26.—Aged field labourer.
Fig. 27. Fig. 28.
Attitude of woman working in the rice fields as seen from the right and left sides.
Fig. 29.—A gang of eight workers in the rice fields.
Consider the postures that miners must endure, or as Pieraccini phrases it, their "disastrous attitudes."
The transport galleries are ordinarily too low to permit a man of average height to walk erect; along these galleries little transport-wagons are run by hand, excepting where the carrying is done on the backs of the men themselves.
"Even in the front of the advance tunnels and in the galleries that are being worked, miners are to be seen in the most incongruous attitudes. These anomalous positions of the body maintained throughout long hours of toil react upon the functional action of the heart and lungs, upon the stomach and intestines in the proper performance of their tasks, and result in producing hernia, varicose veins and eventually deformities of the skeleton (vertebral column, thorax)."[20]
Field labourers also (Fig. 26) become permanently deformed, with diminution of stature, from remaining too long bent over in the act of hoeing or reaping. But a still more painful labour is that of the women in the rice fields during the period when the weeding is done.
The position necessitated by this work requires a strained and prolonged dorsal flexion of the vertebral column, accompanied by a strain on the lower dorsal nerves; great elasticity is required to endure a position so painful and so apt to induce lumbago; only young women can endure it, and even they become deformed, and suffer seriously from anemia, intestinal maladies and diseases of the uterus, which predispose them to abortion or sterility (Figs. 27, 28, 29).
Stone breakers also contract painful diseases and deformities
from their work. They are constantly bowed over their task,
performing a rhythmic, alternating movement of flexion, extension
and torsion of the trunk upon itself, while at the same
time there is a slight undulation in a backward and forward direction,
accompanying the rising and falling of the arm holding the
hammer. These movements of extension and flexion of the trunk
involve the whole vertebral column, while the pelvis remains practically
motionless. "At the end of the day they rise from their
task bowed over and they walk home bowed over, holding the vertebral
column rigid; any attempt to force the trunk into an erect
position is extremely painful. In the morning they return to
their work with their loins still aching." And among these stone
breakers there are young men, some of them mere boys! And when
we think that these injurious attitudes are coupled with malnutrition,
we must realise the extent of the organic disaster that accompanies
diminution of stature as a result of adaptation to labour.
We are naturally horrified at such conditions enforced upon a certain portion of humanity; and we pray for a time to come when machinery will have universally replaced human labour, in transportation, in stone-breaking, and in reaping, and when children will be spared from hard and deforming toil.
But how is it that while we are so sympathetic regarding conditions at a distance from us, we remain unconscious of similar conditions, that are close beside us, and of which we are the directors, the cruel enforcers, the masters?
In the near future, I hope that people will tell with amazement, as if citing a condition of inferior civilisation, how the school children, up to the opening of the twentieth century represented one category of those "deformed by prolonged and enforced labour in injurious positions!"
Such studies in school hygiene as deal with the type of school benches, designed to minimise the danger of deformities of the vertebral column in children—will, I hope, be regarded by the coming generations with the most utter amazement! And the school benches of to-day will find their place in museums, and people will go to look at them as if they were relics of bygone barbarism, just as we now visit the collections from old-time insane asylums, of series of complicated instruments of wood and iron that in bygone centuries were considered necessary for maintaining discipline among the insane.
What in the world would we say, if somebody should propose, in order to obviate the deformities and physiological injuries of labourers, that certain mechanisms should be applied to them individually for the purpose of diminishing the harm? Imagine a law being proposed, to the effect that all miners should be obliged to wear trusses, to keep their viscera from breaking loose, as a result of prolonged compression! What would we think of such reforms and such a path toward an orthopedic state of society?
Our way toward progress and higher civilisation is a very different one. To remove man from torturing toil that twists the bones and undermines the health—such is the goal that it is our duty to set before us!
For the deformed vertebral column is the extreme sign of a great accumulation of evils; the internal organs are correspondingly affected with disorders fatal to the entire organism; but even greater is the corresponding harm done to the human soul! What we want is not only that the bones shall not be thrown out of their eurhythmic harmony, but that the souls of the labourers shall be freed from the inhuman yoke of slavery (progress can consist solely in a radical alteration of the form of labour).
So far as concerns the school, which is not limited to a few categories of human beings, but is extended to all, by requirements of law, is it not possible for us to adopt a different attitude of mind?
The established fact that the pupils may even deform their skeletons in the course of their work, goes to prove that this work contains some error in principle that is fatal to successive generations; and so long as this principle is maintained, we may assert a priori that even if, with the help of school benches as complicated and as costly as orthopedic machines, we should succeed in checking the deformation of the vertebral column, we should fail to check the deformation of the soul. Because whoever is condemned to labour that deforms is a slave.
And as a matter of fact we employ coercive means, "rewards and punishments," to enforce upon children a condition that in their eyes amounts to serving their first sentence.
It is not the school bench, but the method that needs reforming; it is not the ligaments of the spinal column, but human life in evolution that we ought to respect, and lead toward the attainment of perfection! Amid the many banners of liberty that have been raised in these latter times, one is still missing—one which we ought to seize upon as the standard of our cause: the liberty of the new generation, which is groaning in the slavery of compulsory education, upon iron-bound benches, emblematic of chains!
I foresee, in a radical reform of pedagogic methods, the practical possibility of taking as guiding principles the individual liberty of the pupil and a reverential regard for life. And I affirm this all the more loudly, because I have applied such a method with indisputable success in the "Children's Houses," obtaining prodigious results in the health and happiness of the children, perfect discipline in the classes, marvelously rapid progress in studies, and a surprising awakening of souls, a passionate love for the work.
Variations Due to Adaptation in Connection with Causes of Various Kinds—Social, Physiological, Physical, Psychic, Pathological, Etc.
Physiology and Social Conditions.—Nutrition.—One of the effects of environment, of the highest importance in its relation to the development of stature, is nutrition. In order to attain the maximum development as biologically determined by heredity in a race, sufficient nutriment is the first necessity. It is a familiar fact that material or physiological life consists essentially in the exchange and renewal of matter, or in metabolism, which is also a renewal of vital force.
The living molecules are continually breaking up, thus expressing in an active form forces that had accumulated in a potential form, and eliminating the rejected matter; only to form again by means of new matter, containing potential forces. This breaking up and renewal constitutes the material of life, that never pauses in its molecular movement; the cessation of renewal of matter is death, that is, scission without reparation; consumption without renewal; and consequently a rapid disintegration of the body. Living matter consists in metabolism, and is consequently directly related to the nutritive substances which renew the elements necessary for continual redintegration.
We may disregard certain individual potentialities, of a purely biological nature, and that are capable of manifesting vital forces of varying degrees of intensity: but it may be asserted as beyond question that every living being, if he is to live according to his biological destiny, has need of sufficient nutrition. This is not the same as saving that the food determines the life of an individual in its final development, in the sense that by eating in excess one may attain the stature of a giant, or an imbecile become intelligent or a man of talent become a genius. We all bear within us, in that fertilised germ that constituted the first cell of our organism, predetermined biological conditions, on which depend the physical limits of our body, as well as those of our psychic individuality. But in order that this germ may develop in accordance with its potentiality, it is necessary that it shall obtain the requisite material from its environment. Because otherwise—and here the relation is direct—neither the volumetric development nor the morphological development can be accomplished, nor the psychic potentiality express itself; in other words, the stature will be undersized, in a body defrauded of the degree of beauty potential in the germ, and the muscular forces, in common with those of the brain, will remain at a level of development below that which nature had intended. Consequently, to deprive children of their requisite nutriment is stealing from life, it is a biological crime.
While we live, we must eat; and while we labour, that is, while we expend the vital forces, it is necessary to repair them. The schools should establish a system of luncheons for the pupils; this is a principle that has already been generally recognised and is already bearing fruit.
There was a time when a good appetite was regarded as a low material instinct; it was also the time when people sang the praises of spirituality, but actually indulged in banquets of Lucullian lavishness. The vice of the palate and the physiological need of nourishment were included under one and the same disdain.
To-day science has shed its light upon the true conception of nutrition and holds it to be the first necessity of life, and consequently the first social problem to be solved.
From this point of view, food is not a vulgar material thing, nor the dinner-table a place of debauchery. Indeed, there is nothing which affords better proof of immateriality than the act of eating. In fact, the necessity of eating is itself a proof that the matter of which our body is composed does not endure but passes like the fleeting moment. And if the substance of our bodies passes in this manner, if life itself is only a continual passing away of matter, what greater symbol of its immateriality and its spirituality is there than the dinner-table?
"... the bread is my flesh and the wine is my blood; do this in remembrance of what life really is."
Something similar to this is being accomplished to-day by science in regard to the sexual relations. We are accustomed to consider the sexual instincts as something contemptible, material and low, praising abstinence, and leaving these instincts wholly out of consideration in the course of education, as though they were something degrading, or even shameful. And undoubtedly our sexual abuses are shameful, and shameful also is the barbaric tolerance of the masses regarding prostitution, seduction, illegitimacy and the abandonment of new-born children. It is criminal abuse that makes us despise sexual relations, just as at one time excesses of the table made us despise nutrition. But the day will come when science will raise to the dignity of a new sexual morality the physiological function which to-day is considered material and shameful—and that comprehends the most sublime of human conceptions. In it are to be found the words which ancient races deposited in their religious tabernacles: creation, eternity, mystery. And in it are also to be found the most sublime conceptions of modern races: the destiny of humanity, the perfectionment of the human species.
Accordingly, we must to-day regard the serving of food in the schools as a necessity of the first order; but it is well, in introducing it into the schools, to surround it with that halo of gladness and of high moral significance that ought to accompany all manifestations of life. The hymn to bread, which is a human creation and a means of preserving the substance of the human body, ought to accompany the meals of our new generations of children. The child develops because the substance of his body passes away, and the meals that he eats symbolise all this: furthermore, they teach him to think of the vast labour accomplished by men who, unknown as individuals, cultivate the earth, reap the grain, grind the flour, and provide for all men and for all children. Where they are and who they are, we do not know; the bread bears neither their name nor their picture. Like an impersonal entity, like a god, humanity provides for all the needs of humanity: and this god is labour. If the child is destined some day to become himself a labourer, who produces and casts his products to humanity without knowing who is to receive his contribution toward providing for humanity, it is well that as he lifts his food to his lips he should realise that he is contracting a debt toward society at large, and that he must give because he takes; he must "forgive debts as his have been forgiven"; and since life is gladness, let him send forth a salutation to the universal producing power: "Our Father, give us our daily bread!"
The Providence of human labour rules over our entire life; it gives us everything that is necessary. The God of the Universe, in whose train come cataclysms, is not more terrible than the god, Humanity, that can give us War and Famine. While we give bread to the child, let us remember that man does not live by bread alone: because bread is only the material of his fleeting substance.
The system of furnishing meals in school constitutes a chapter of School Hygiene that cannot directly concern us. Nevertheless, there are three rules of this hygiene which should be borne in mind: Children should never, in any case, drink wine, alcoholic liquors, tea or coffee—in other words, stimulants, which are poisons to their childish organisms. On the other hand, children need sugar, because sugar has a great formative and plastic power; all young animals have sweetish flesh because their muscles, in the course of development, are extremely rich in sugar. The method of giving sugar to children should be as simple as possible, such, for instance, as is endorsed by the very successful English system of hygiene for children, which recommends freshly cooked fruits, sprinkled with sugar or served with a little syrup. But the substantial nourishment for young children should consist of soup or broth served hot, since heat is as essential as sugar for organisms in the course of evolution.
The English recommend soups made of cereals and gluten, in which it is never necessary to use soup stock, just as it is never necessary to use meat in children's diet.
That nutrition has a noteworthy influence upon growth, and therefore upon the definitive limits of stature, is exhaustively proved by statistics.
In his brilliant studies of the poorer classes, Niceforo has collected the following average statures:[21]
| Age | Stature (in centimetres) | |
|---|---|---|
| Children | ||
| Rich | Poor | |
| 7 years | 120 | 116 |
| 8 years | 126 | 122 |
| 9 years | 129 | 123 |
| 10 years | 134 | 128 |
| 11 years | 135 | 134 |
| 12 years | 140 | 138 |
| 13 years | 144 | 140 |
| 14 years | 150 | 146 |
from which it appears that, in spite of the strong biological impulse given by the attainment of puberty, the children of the poor continue to show a stature lower than that of the well-to-do. Alĕs Hrdlĭcka has compiled the following comparative table of the poor or orphaned children received into the asylums, and the pupils of the public schools in Boston:
| Stature of American children | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Boys | ||||||||||||
| Age in years | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| In asylums | 971 | 1088 | 1172 | 1163 | 1234 | 1261 | 1315 | 1367 | 1424 | 1452 | 1518 | — |
| in Boston public schools | 1060 | 1120 | 1176 | 1223 | 1272 | 1326 | 1372 | 1417 | 1477 | 1551 | 1599 | 1665 |
| Girls | ||||||||||||
| In asylums | — | — | 1101 | 1158 | 1204 | 1289 | 1290 | — | — | 1398 | — | — |
| in Boston public schools | 1052 | 1109 | 1167 | 1221 | 1260 | 1315 | 1366 | 1452 | 1492 | 1532 | 1559 | 1567 |
Even after reaching the adult age these differences are maintained, as may be shown by the following statistics taken from various authorities:
| Average statures obtained from soldiers (in centimetres) | |||||
|---|---|---|---|---|---|
| Italians | English | French | |||
| Students and professional men | 167 | Professional men | 175 | Students | 169 |
| Tradesmen | 165 | Merchants | 172 | Domestics | 166 |
| Peasants | 164 | Peasants | 171 | Day labourers | 165 |
| City employees | 169 | ||||
from which it appears that while in Italy the class of labourers having the lowest stature is the peasant class, which lives under the most deplorable economic conditions, in England on the contrary it is the workers in the cities who live under worse economic conditions than the peasantry, it being well known that the English peasant is the most prosperous in the agricultural world.
According to Livi, it is nutrition which causes the differences of average stature that are usually to be found between different social classes, and those between the inhabitants of mountains and of plains, or between the dwellers on the mainland and on the islands. In general the mountain-bred peasants have a lower stature than those of the plains; and this is because the means of procuring food are fewer and harder in mountainous regions.
Similarly, the islanders, because of less ready means of communication, have less likelihood than those on the mainland of obtaining adequate nutrition.
The same may be said regarding the differences found between the statures of cultured persons and of the illiterate, to the disadvantage of the latter (the poorer classes).
Students show the tallest stature of all, because they have in their favour the joint effect of the two chief factors of environment that influence this anthropological datum: mechanical causes and nutrition. A sedentary life, and above all a hearty diet both contribute to the tall stature of students, doctors, and members of the liberal professions. In this respect, the average figures of all the authorities agree, as appears from the following tables:[22]
LIVI: 256,166 ITALIAN SOLDIERS
| Professions and callings | Average stature in centimetres |
|---|---|
| Students and professional men | 166.9 |
| Small shopkeepers and the like | 165.0 |
| Peasants | 164.3 |
| Blacksmiths | 165.0 |
| Carpenters | 165.1 |
| Masons | 164.8 |
| Tailors and shoemakers | 164.5 |
| Barbers | 164.3 |
| Butchers | 165.7 |
| Carters | 164.4 |
| Bakers | 164.7 |
| Day labourers in general | 164.4 |
ROBERT AND RAWSON: 1935 ADULT ENGLISHMEN
| Professions and employments | Average stature in centimetres |
|---|---|
| Professional men | 175.6 |
| Merchants and tradesmen | 172.6 |
| Peasants and miners | 171.5 |
| City labourers | 169.2 |
| Sedentary workmen | 167.4 |
| Prisoners | 168.0 |
| Insane | 166.8 |
OLORIZ: 1798 CONSCRIPTS FROM THE CITY OF MADRID
| Professions and employments | Average stature in centimetres |
|---|---|
| Liberal professions | 163.9 |
| Including: | |
| Students | 164.0 |
| Other professions | 161.1 |
| Workmen employed in the open air | 160.7 |
| Workmen employed in closed rooms | 159.8 |
| Including: | |
| Tailors, hatters and the like | 159.0 |
| Shoemakers | 158.9 |
Conditions of nutrition, which are always accompanied by a combination of other hygienic conditions all tending toward the same effects, have also an influence upon the development of puberty.
Puberty is retarded by malnutrition. As a result of an inquiry made among the inmates of the Pia Barolo Society, which offers an asylum to reformed prostitutes, Marro[23] records that out of ninety rescued girls only those above the age of fourteen had begun to menstruate: notwithstanding that the normal period for the development of puberty in Italian women is between the years of twelve and thirteen. Furthermore, among the girls above the age of fourteen, menstruation had not yet begun in all cases; on the contrary, a large proportion of them still failed to show the phenomena of puberty:
| Age in years | Whole number | Number menstruating |
|---|---|---|
| 14-15 | 11 | 4 |
| 15-16 | 11 | 7 |
| 16-17 | 11 | 8 |
| 17-18 | 8 | 7 |
All the rest (thirty in number) menstruated for the first time after the age of eighteen.
Among those in whom menstruation had appeared earlier, the order of appearance was as follows:
| Years | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| Number | 1 | 3 | 4 | 5 | 12 | 17 | 9 | 5 |
When we consider that we are dealing with rescued girls, we may conclude that direct sexual stimulus does not facilitate the normal development of puberty, but on the contrary, in conjunction with other causes, retards it. Accordingly, we must not confound the normal development of the organism with its disorders: whatever aids the natural development of life is useful and healthy. There may be conditions unfavourable to the development of puberty, which are favourable to the development of sexual vices (see, further on, the other causes influencing puberty, and moral conditions in colleges).
In his work above cited, Marro compares his figures obtained from the Pia Barolo Society with those of Dr. Bianco[24] taken from 78 young girls in city institutes representing young women in easy circumstances:
| Date of first menstruation. | Girls in the Pia Barolo Society. Percentage | Girls in city institutes for the wealthy classes. Percentage |
|---|---|---|
| 10 years | 1.7 | —— |
| 11 years | 5.3 | 1.3 |
| 12 years | 7.1 | 13.3 |
| 13 years | 8.9 | 18.7 |
| 14 years | 21.4 | 29.3 |
| 15 years | 30.3 | 20.0 |
| 16 years | 16.0 | 8.0 |
| 17 years | 8.9 | 4.0 |
It should be noted that the cold climate of Turin retards puberty (see below): but the above table clearly shows the precocious puberty of young women in easy circumstances; in the great majority, in fact, it occurs between the ages of twelve and fourteen, with thirteen for the average; on the other hand, the majority for reformed prostitutes is between fourteen and sixteen, with fifteen for the average.
Besides labour and nutrition, there are other factors that contribute to the development of stature (which we regard as an index to the entire mass of the body). Such factors are:
Physical Conditions—Heat, Light, Electricity
Thermic Conditions.—Among the physical conditions which may have an influence upon the stature, the thermic conditions ought to receive first consideration.
It is a principle demonstrated by nature that organisms in the course of evolution have need of heat. Even the invertebrates, as for example the insects, develop during the heat of summer; and the eggs of the higher vertebrates such as the birds, develop their embryo by means of the maternal warmth. In placental animals the development throughout the whole embryonic period takes place within the maternal womb, in the full tide of animal heat. In order to preserve life in premature babies, that is, in those born before the expiration of the physiological term of nine months, incubators have been constructed, an oven-like arrangement in which the child may be maintained at a temperature considerably higher than would be possible in the outside air; the term is also specifically used of the structures in which fertilised hens' eggs are kept during the required period of time until the chickens are hatched.
Accordingly it is a principle taught us by nature that organisms in the course of evolution have need of heat. The most luxuriant vegetation, the most gigantic animals, the most variegated birds belong to the fauna and flora of the tropics.
How is this physiological law, which nature expresses in such broad, general lines, to be interpreted by us in the environment of the school? It is well known that in this regard there are two conflicting opinions. There are some who would go to excessive lengths in protecting small children from the cold, by dressing them entirely in woolen garments and keeping their apartments well heated; others on the contrary assert that the physiological struggle of adaptation to the cold invigorates the infant organism, and they advise that the child's body should never be completely protected, as for example that the legs should always be left bare, that the child should be lightly clad, that his apartments should not be heated, etc.
Furthermore, it used to be held in the pietistic schools, and still is to some extent, that warmth had a demoralising influence, inasmuch as it tended to enervate both mind and body.
We educators cannot fail to be interested in such a discussion. As often happens in physiological arguments, the two opposite contentions each contain a part of the truth. In order to get at the truth of the matter, it is necessary to distinguish two widely separated facts: on the one hand, physiological exercise in the form of thermal gymnastics, and on the other, the development of organisms in a constantly cold environment.
To live constantly warm, protected either by clothes or by artificial heat, so that the organism remains always at a constant temperature, is not favourable to growth, because it deprives the organism of the physiological exercise of adapting itself to variations in external temperature, an exercise which stimulates useful functions. By perspiring in summer, we cleanse our system of poisonous secretions, and by shivering in winter we give tone to our striped muscles and to our internal organs, as is proved by our gain in appetite. Anyone who wishes to be kept on ice in summer and to transform his apartment into a hot-house in winter, robs himself of these advantages and enfeebles his system.
The apparent comfort is not in this case a real physiological enjoyment but a weakness of habit that is accompanied by a loss of physiological energy. What makes us robust is a rational exercise of all our energies. Thermal gymnastics is consequently useful. It consists in exposing a healthy, resistant organism to changes in temperature, trusting to our physiological resources for the means of defense. Thus, for example, a child who is well fed and well protected from the cold for many hours of the day in the well-heated family apartment, can go out with bare legs into the snow; and doing so will make him more robust. In the same way, the ancient Romans exposed themselves in their hot baths to the steadily increasing temperature of the calidarium, up to the point of 60 degrees (140 Fahrenheit), and then still perspiring flung themselves into a cold plunge. And it is a familiar fact that afterward they held lavish banquets in these same baths. Such exercise which in classic times gave vigour to the race that made itself master of the world may be summed up as follows: "Thermic gymnastics" of organisms "well nourished and strong."
Our own boatmen also throw themselves into the river in midwinter, half nude, and half nude they ply their long poles. They expose themselves to the cold, in the same way that they might raise a weight of many pounds with their robust arms, for gymnastic exercise.
But all this differs radically from living continually in a cold temperature. It is a very different thing from the life of a child of the lower classes, who goes bare-foot in winter, clad in a few scant rags, half frozen in his wretched tenement, and unable to obtain sufficient nourishment to develop the needed heat-units. He is already deficient in bodily heat because of malnutrition, and the effects of cold are cumulative. In this case it is not a question of thermic exercise but of a permanent deprivation of heat, in individuals who are already suffering from an insufficient development of heat-units. Consequently the organism is enfeebled—it grows under unfavorable conditions—and the result is a permanent diminution of development. Whoever grows up, exposed to cold after this fashion, has, in the average case, a lower stature than those who grow up in the midst of warmth, or in the practice of that healthful exercise which constitutes the ideal: thermic gymnastics.
The contradictory ideas that are held as to the efficacy of heat in regard to growth, are due to a large extent to a prejudice which amounts to this: heat is effective in promoting the evolution of life as a whole, and consequently the development of that part of life that is centred in the organs of reproduction; from which comes the wellnigh antiquated theory that artificial heat should be banished from the schools, as one of the factors leading to immorality! It is true that warmth accelerates the development of puberty; but who is there in this twentieth century who can still conceive the idea that it is a moral act to silence the forces of nature? Good nourishment also leads to a more precocious puberty; and the same is true of the repeated psychic stimulus produced by various forms of intellectual enjoyment, by conversation, and by social intercourse with individuals of the opposite sex. Accordingly, if it were a moral act to retard the development of puberty and to produce a general impoverishment of sexual life, the moral measures to be taken in education would be cold, malnutrition, and the isolation of the sexes in the schools, which, as a matter of fact, form the stumbling-block of environment in our colleges. But it is well known that all this leads on the contrary to moral and physical degeneration! As has already been said, the normal physiological development stands in counterdistinction to immoral habits; consequently, whatever is an aid to physiological development is in its very nature moral.
In warm climates the first manifestations of puberty occur precociously in man as well as in woman; and with them come all the transformations that are associated with puberty, among others the rapid increase of stature. In cold climates, on the contrary, such manifestations are more tardy. The women of Lapland are latest of all to develop. With them, menstruation begins only at eighteen, and they are incapable of conceiving under the age of twenty, while the period of the menopause (involution of sexual life) is correspondingly early; in other words, the entire period of sexual life is shortened. Furthermore, the fertility of the women of Lapland is low; they cannot conceive more than three children. But if these same women leave Lapland and make their home in civilised countries, as for example in Sweden, they have a more precocious sexual life, as well as longer and more fertile, and altogether quite similar to that of the Swedish women.[25]
Cabanis[26] notes that even in cold climates, when young girls spend much of their time in the vicinity of stoves, menstruation begins at about the same age as in women who live on the banks of the Ganges—as is the case with the daughters of wealthy Russians, whose development is quite precocious. In Arabia, in Egypt, and in Abyssinia the women are frequently mothers at the age of ten, menstruation having begun at the eighth year. It is even said that Mahomed married Radeejah when she was only five and that he took her to his bed at the age of eight. The religious laws of India permit the marriage of girls when they are eight years old.
Consequently it is true that heat has an influence upon the development of the organism independently of other influences; in fact, heat acts both in the form of climate, that is, in a natural state, and also in an artificially warmed environment. It is also one of the causes of the different degrees of growth in stature through the successive seasons (see below).
In conclusion: it is enjoined upon us, as a hygienic necessity, to heat the schools in winter, especially the schools for the poorer classes; it means more than increased vigour, it may even mean giving life to some who otherwise would pine away from deprivation of heat-units, a condition most unfavourable to organisms in the course of evolution.
Photogenic Conditions.—Light also has a perceptible influence upon growth: it is a great physiological stimulant. At the present day, physical therapy employs light baths for certain forms of neurasthenia and partial enfeeblement of certain organs; and some biological manifestations, such as the pigments—and similarly the chlorophyl in plants and the variegated colouring of birds—receive a creative stimulus from light.
Light contains in its spectrum many different colours, which act quite differently upon living tissues; the ultra-violet rays, for instance, kill the bacilli of tuberculosis and sometimes effect cures in cases of cancer. Psychiatrists and neuropaths have demonstrated that many colours of light have an exciting effect, while others, on the contrary, are sedative.
Hence there has arisen in medicine a vast and most interesting chapter of phototherapy.
In regard to the phenomena of growth, it has been noted that certain coloured lights are favourable to it, while certain others, on the contrary, diminish or arrest it, as the red and the green.
Phototherapy ought to concern us as educators, especially in regard to schools for the benefit of nervous children: a periodic sojourn in a room lit by calming colours might have a beneficent effect upon epileptic, irritable, nervous children, in place of the debilitating hot bath, or, worse yet, the administration of bromides; while light-baths would be efficacious for weak and torpid children.
But for normal children we must consider the light of the sun as the best stimulant for their growth. A sojourn at the sea-shore, so favourable to the development of children, is now believed to owe its beneficial effects to the fact that the child, playing half naked on the sea-shore, bathes more in the sunlight than he does in the salt water. Gymnastics in the sun, while the body is still only half dry, is what the younger generations should practise on a large scale, if they would bring about the triumph of physiological life.
We must not forget this great principle when, by planning home work for the pupils, we practically keep them housed during the entire day, keeping them for the most part employed in writing or reading; in other words, using their sense of sight, which, if it is to be preserved unharmed, demands a moderate light. The eye ought to rest its muscles of accommodation, and the whole body be exposed to the full light of the sun during the greater part of the day. Let us remember that often the children of the poor live in a home so dark that even in full mid-day they are obliged to light a lamp! Let us at least leave them the light of the street, as a recompense for wretchedness that is a disgrace to civilisation!
According to certain experiments conducted in Rome by Professor Gosio, the light of the sun has an intensive effect upon life. Living creatures reared in the solar light grow and mature earlier, but at the same time their life is shortened; that is, the cycle of life is more intense and more precocious; conversely, in the shade the cycle of life is slower, but of longer duration. A plant matures more quickly in the sun, but its stature is lower than that of a plant in the dark, which has grown far more slowly, but has become very tall and slender and lacking in chlorophyl. Similarly, as is well known, the women in tropical countries attain a precocious puberty, while conversely those of the North attain it tardily; and this fact must be considered in relation to the influence of the sun. A life passed wholly in the sunlight would be too intense; an organism that is exposed a few hours each day to the rays of the sun is invigorated; the interchange of matter (metabolism) is augmented; all the tissues are beneficially stimulated. For this reason sun baths are employed for paralytic and idiot children, and consist in exposing the body of the child, reclining upon its bed and with its head well protected, to the direct rays of the sun for several hours a day; this treatment is found to be most efficacious in giving tone to the tissues and improving the general condition of the system.
Variations in the Growth of Stature According to the Seasons.—One proof of the beneficent influence of heat and sunlight upon the growth of the organism, is afforded by the variations in the rate of growth according to the seasons. Every individual grows more in summer than in winter. Daffner gives the following figures relative to the increase in stature according to the seasons:
| Number of subjects | Age in years | Stature in centimetres | Increase in centimetres | ||||
|---|---|---|---|---|---|---|---|
| October | April | October | Winter | Summer | Entire year | ||
| 12 | 11-12 | 139.4 | 141.0 | 143.3 | 1.6 | 2.3 | 3.9 |
| 80 | 12-13 | 143.0 | 144.5 | 147.4 | 1.5 | 2.9 | 4.4 |
| 146 | 13-14 | 147.5 | 149.5 | 152.5 | 2.0 | 3.0 | 5.0 |
| 162 | 14-15 | 152.5 | 155.0 | 158.5 | 2.5 | 3.5 | 6.0 |
| 162 | 15-16 | 158.5 | 160.8 | 163.8 | 2.3 | 3.0 | 5.3 |
| 150 | 16-17 | 163.5 | 165.4 | 167.7 | 1.9 | 2.3 | 4.2 |
| 82 | 17-18 | 167.7 | 168.9 | 170.4 | 1.2 | 1.5 | 2.7 |
| 22 | 18-19 | 169.8 | 170.6 | 171.5 | 0.8 | 0.9 | 1.7 |
| 6 | 19-20 | 170.7 | 171.1 | 171.5 | 0.4 | 0.4 | 0.8 |
In the "Children's Houses," I require a record of stature to be made month by month in the case of every child, the measurement being taken on the day corresponding to the day on which he was born in the month of his birth; in addition to which I keep a record of the total annual increase.
The ages of these children vary between three and four years, and they all belong to the poorer social classes.
MONTHLY AVERAGE INCREASE IN STATURE
In the "Children's Houses"
(In millimetres)
| Cold months | Warm months | ||||
|---|---|---|---|---|---|
| December | January | February | May | June | July |
| 4 | 3 | 4 | 7 | 8 | 8 |
Another factor of growth is
Electricity.—One of the most interesting discoveries of recent date is that of the influence of terrestrial electricity upon the growth of living organisms.
A series of experiments were made, by isolating cavies (a species of small Indian pig) from terrestrial electricity, and as a result they were found to be retarded in growth and to develop very imperfectly, much as though they had been suffering from rickets. In short, they manifested an arrest of organic development.
If, in electro-therapy, an electric current is applied to the cartilages of the long bones in children whose limbs have apparently been arrested in development, the result is a rapid increase in length, amounting to a luxuriant osteogenesis.
Since we know that the electric current can stimulate the nerve filaments and the fibres of the striped muscles when they have been rendered inactive from the effects of paresis or even of paralysis, we realise that electricity can exert an influence over the entire physiological life of an organism. We live not only upon nutriment, air, heat, and light, but also upon a mysterious, imperceptible force, that comes to us from the mother earth.
In addition to the biological potentialities which control the development of every individual, all living creatures owe something of themselves to their environment.
Space.—An empirical contention, without scientific value, but nevertheless of some interest, is that there is an ultimate relationship between the dimensions of living bodies and the territorial space, that is, the environment in which they are destined to live. In view of the innumerable varieties of living creatures, such an assertion would seem to be utterly unfounded. But as a matter of fact we see that while inorganic bodies can increase indefinitely in dimension, living creatures are limited in form and size. This fact undoubtedly has some primal connection with properties innate in corporeal life itself; in fact, in order to attain its appointed end, life requires the services of certain very small microscopic particles called cells. But the aggregations and combinations of cells in living organisms are also limited in their turn, and no matter how willingly we would attribute the greatest share of causation to biological facts, nevertheless, as always happens in life, we cannot wholly exclude environment.
Both animals and men that are bred on vast continents (Chinese, Russians) have tended to produce races of powerful and giant build: in islands, on the contrary, the men and the animals are of small size; it is sufficient merely to cite the men and the little donkeys of Sardinia, the small Irishmen who furnish jockeys for the race-track, and the small Irish horses or ponies that serve as saddle-horses for the children of the aristocracy the world over.
There is a harmony of associations, as between the container and the contained, between environment and life, notwithstanding that as yet science has not made serious investigations in regard to it.
Voltaire, in his Micromega, avails himself of this intuitive conception to create the material needed for his satire; he talks amusingly of the inhabitant of the planet Sirius, who was eight leagues in height and at four hundred years of age was still in school, while the inhabitant of Saturn was a mere pigmy in comparison, being scarcely a thousand rods tall—in fact, the inhabitants of Saturn could not be otherwise than pigmies in comparison, since Saturn is barely nine hundred times larger than the earth.
Gulliver makes use of similar standards in his Travels, which are read with so much delight by children.
Psychic Conditions.—Psychic Stimuli.—Accordingly many chemical and physical factors associated with the environment concur in aiding life in its development. From the light of the sun to the electricity of the earth, the whole environment offers its tribute to life, in order to cooperate in life's triumph. But, in the case of man, in addition to these widely different factors, there is still another distinctly human factor that we must take into consideration and that we may call the psychic stimulus of life: We may scientifically affirm the Bible statement that "man does not live by bread alone."
Without reverting to the basic physiological explanations of the emotions, as given by Lange and James, we may nevertheless assert that sensations of pleasure stimulate the renewal of bodily tissues and consequently promote health, happiness, and strength; while, on the contrary, painful events produce physiological effects depressing to the tone of the nervous system and to the metabolic activity of the tissues.
But it is precisely these metabolic phenomena that hold the key of life, and an organism in the course of evolution depends directly upon them. This problem concerns pedagogy in a very special way: when we have given food to the children in our schools, we have not yet completed our task of nourishing these children; for the phenomena of nutrition which take place in the hidden recesses of their tissues are very different from a simple intestinal transformation of aliments, and are influenced by the psychic conditions of the individual pupil.
Great workers not only need abundant nutriment, but they require at the same time a series of stimuli designed to produce "pleasure." The pleasures of life, necessary to human existence, include more than bread. In the history of social evolution there exist, side by side with the productions of labour, an entire series of enjoyments, more or less elevated, that constitute the stimului to production, and hence to evolution, and more profoundly still, to life itself.
The further man evolves and the more he produces, the more he ought to multiply and perfect his means of enjoyment.
Without stimuli, nutrition would grow less and less till it ended in death. Every-day experience in the punishment of criminals gives us proof of this. Confinement to a solitary cell is nothing else than a complete deprivation of psychic stimuli. The prisoner does not lack bread, nor air, nor shelter from the elements, nor sleep; his whole physiological life is provided for, in the strict material sense of the word. But the bare walls, the silence, the isolation from his fellow men in utter solitude, deprive the prisoner of every stimulus, visual, oral and moral.
The consequences are not merely a state of hopelessness, but a real and actual malnutrition leading to tuberculosis, to anemia, to death from atrophy. We may affirm that such a prisoner dies slowly of hunger due to defective assimilation; the solitary cell is the modern donjon, and far more cruel than the one in which Ugolino died within a few days, so much so that solitary confinement, being incompatible with life, is only of short duration.
Labour, love, and sensations apt to stimulate ideas, that is, to nourish the intelligence, are necessities of human life.
This is further proved by observations made regarding the development of puberty. Psychic stimuli may render such development precocious, and, on the contrary, their absence may retard it. Jean Jacques Rousseau relates in Émile that at Friuli he encountered young people of both sexes who were still undeveloped, although they were past the usual age and were strong and robust, and this he attributed to the fact that "owing to the simplicity of their customs, their imagination remained calm and tranquil for a longer time, causing the ferment in their blood to occur later, and consequently rendering their temperament less precocious."[27]
Recent statistical research confirms the intuitive observation of that great pedagogist; the women in the environs of Paris attain puberty nearly a year later than those who live in the city; and the same difference is observed between the country districts around Turin and those of the city itself.
All this goes to prove the fact of psychic influence upon physiological life: psychic excitation, experienced with pleasure, by developing healthy activities, aids the development of physical life.[28]
These principles must be taken under deep consideration when it comes to a question of directing the physiological growth of children. Fenelon relates a fable about a female bear who, having brought into the world an exceedingly ugly son, took the advice of a crow and licked and smoothed her cub so constantly that he finally became attractive and good-looking. This fable embodies the idea that maternal love may modify the body of the child, aiding its evolution toward a harmony of form by means of the first psychic stimuli of caresses and counsel.
Nature has implanted in the mother not only her milk, the material nourishment of her child, but also that absolutely altruistic love which transforms the soul of a woman, and creates in it moral forces hitherto unknown and unsuspected by the woman herself—just as the sweet and nourishing corpuscles of the milk were unknown to the red corpuscles of her blood. Accordingly, the nature of the human kind protects the species through the mother in two ways, which together form the complete nutrition of man: aliment and love. After a child is weaned, it obtains its aliment from its environment in more varied forms; and it also obtains from its environment a great variety of psychic stimuli, calculated not only to mould its psychic personality, but also to bring its physiological personality to its full development.
I have had most eloquent experience of this in the "Children's Houses" in the San Lorenzo quarter of Rome. This is the poorest quarter in the city, and the children are the sons and daughters of day labourers, who consequently are often out of work; illiteracy is even yet incredibly frequent among the adults, so much so that in a very high percentage of cases at least one of the parents is unable to read. In these "Children's Houses" we receive little children between the ages of three and seven, on a time schedule that varies between summer, from nine to five, and winter, from nine to four.
We have never served food in the school; the little ones, all of whom live in their own homes, with their parents, have a half hour's recess in which to go home to luncheon. Consequently we have not in any way influenced their diet.
The pedagogic methods employed, however, are of such sort as to constitute a gradual series of psychic stimuli perfectly adapted to the needs of childhood; the environment stimulates each pupil individually to his rightful psychic development according to his subjective potentiality. The children are free in all their manifestations and are treated with much cordial affection. I believe that this is the first time that this extremely interesting pedagogic experiment has ever been made: namely, to sow the seed in the consciousness of the child, leaving free opportunity, in the most rigorous sense, for the spontaneous expansion of its personality, in an environment that is calm, and warm with a sentiment of affection and peace.
The results achieved were surprising: we were obliged to remodel our ideas regarding child psychology, because many of the so-called instincts of childhood did not develop at all, while in place of them unforeseen sentiments and intellectual passions made their appearance in the primordial consciousness of these children; true revelations of the sublime greatness of the human soul! The intellectual activity of these little children was like a spring of water gushing from beneath the rocks that had been erroneously piled upon their budding souls; we saw them accomplishing the incredible feat of despising playthings, through their insatiable thirst for knowledge; carefully preserving the most fragile objects of the lesson, the tenderest plants sprouting from the earth—these children that are reputed to be vandals by instinct! In short, they seemed to us to represent the childhood of a human race more highly evolved than our own; and yet they are really the same humanity, marvelously guided and stimulated through its own natural and free development!
But what is still more marvelous is the astonishing fact that all these children are so much improved in their general nutrition as to present a notably different appearance from their former state, and from the condition in which their brothers still remain. Many weakly ones have been organically strengthened; a great many who were lymphatic have been cured; and in general the children have gained flesh and become ruddy to such an extent that they look like the children of wealthy parents living in the country. No one seeing them would believe that these were the offspring of the illiterate lower classes!
Well, let us glance over the notes taken upon these children at the time when they first entered the school; for the great majority, the same note was made: need of tonics. Yet not one of them took medicine, not one of them had a change of diet; the renewed vigour of these children was due solely to the complete satisfaction of their psychic life. And yet they remain in school continually from nine till five through eleven months out of the year! One would say that this was an excessively long schedule; yet what is still more surprising is that during all this period the children are continually busy; and even more remarkable is the report made by many of the mothers to the effect that after their little ones have returned home they continue to busy themselves up to the hour of going to bed; and lastly—and this seems almost incredible—many of the little ones are back again at school by half past eight in the morning, tranquil, smiling, as though blissfully anticipating the enjoyment that awaits them during the long day! We have seen small boys become profoundly observant of their environment, finding a spontaneous delight in new sensations. Their stature, which we measure month by month, shows how vigorous the physiological growth is in every one of them, but particularly in certain ones, whose blood-supply has become excellent.
Such results of our experiments have amazed us as an unexpected revelation of nature, or, to phrase it differently, as a scientific discovery. Yet we might have foreseen some part of all this had we stopped to think how our own physical health depends far more upon happiness and a peaceful conscience than upon that material substance, bread!
Let us learn to know man, sublime in his true reality! let us learn to know him in the tenderest little child; we have shown by experiment that he develops through work, through liberty, and through love; hitherto, in place of these, we have stifled the splendid possibilities of his nature with irrational toys, with the slavery of discipline, with contempt for his spontaneous manifestations. Man lives for the purpose of learning, loving and producing, from his earliest years upward; it is from this that even his bones get their growth and from this that his blood draws its vitality!
Now, all such factors of physiological development are suffocated by our antiquated pedagogic methods. We prevent, more or less completely, the development of the separate personalities, in order to keep all the pupils within the selfsame limits. The perfectionment of each is impeded by the common level which it is expected that all shall attain and make their limit, while the pupils are forced to receive from us, instead of producing of their own accord; and they are obliged to sit motionless with their minds in bondage to an iron programme, as their bodies are to the iron benches.
We wish to look upon them as machines, to be driven and guided by us, when in reality they are the most sensitive and the most superb creation of nature.
We destroy divine forces by slavery. Rewards and punishments furnish us with the needed scourge to enforce submission from these marvelously active minds; we encourage them with rewards! to what end? to winning the prize! Well, by doing so we make the child lose sight of his real goal, which is knowledge, liberty and work, in order to dazzle him with a prize which, considered morally, is vanity, and considered materially is a few grains of metal. We inflict punishments in order to conquer nature, which is in rebellion, not against what is good and beautiful, not against the purpose of life, but against us, because we are tyrants instead of guides.
If only we did not also punish sickness, misfortune and poverty!
We are breakers-in of free human beings, not educators of men.
Our faith in rewards and punishments as a necessary means to the progress of the children and to the maintenance of discipline, is a fallacy already exploded by experiment. It is not the material and vain reward, bestowed upon a few individual children, that constitutes the psychic stimulus which spurs on the multifold expansions of human life to greater heights; rewards degrade the grandeur of human consciousness into vanity and confine it within the limits of egotism, which means perdition. The stimulus worthy of man is the joy which he feels in the consciousness of his own growth; and he grows only through the conquest of his own spirit and the spread of universal brotherhood. It is not true that the child is incapable of feeling a spiritual stimulus far greater than the wretched prize that gives him an egotistical and illusory superiority over his companions; it is rather that we ourselves, because already degraded by egotism, judge these new forces of nascent human life after our own low standards.
The small boys and girls in our "Children's Houses" are of their own accord distrustful of rewards; they despise the little medals, intended to be pinned upon the breast as marks of distinction, and instead they actively search for objects of study through which, without any guidance from the teacher, they may model and judge and correct themselves, and thus work toward perfection.
As to punishments, they are depressing in effect, and they are inflicted upon children who are already depressed!
Even in the case of those who are adult and strong, we know that it is necessary to encourage those who have fallen, to aid the weak, to comfort those who are discouraged. And if this method serves for the strong, how much more necessary it is for lives in the course of evolution!
This is a great reform which the world awaits at our hands: we must shatter the iron chains with which we have kept the intelligence of the new generations in bondage![29]
Pathological Variations.—Among the factors that may have a notable influence upon the stature are the pathological causes. Aside from those very rare occurrences that produce gigantism, it may be affirmed that pathological variations result in general in an arrest of development. In such a case it may follow that an individual of a given age will show the various characteristics of an individual of a younger age; that is, he will seem younger or more childish.
In such a case the stature has remained on a lower level than that which is normal for the given age; and this in general is the most obvious characteristic, because it is the index of the whole inclusive arrest of the physical personality. But together with the diminution of stature, various other characteristics may exist that also suggest a younger age; that is, the entire personality has been arrested in its development.
It follows, in school for example, that such pathological cases may escape the master's attention; he sees among his scholars a type that is apparently not abnormal, because it does not deviate from the common type, in fact is quite like other children; but when we inquire into its age, then the anomaly becomes evident, because the actual age of this small child is greater than his apparent age.
A principle of this sort announced in these terms is perhaps too schematic; but it will serve to establish a clear general rule that will guide us in our separate observations of a great variety of individual cases.
This form of arrested development was for the first time explained by Lasegue, who introduced into the literature of medicine or rather into nosographism, the comparative term of infantilism.
Infantilism has been extensively studied in Italy by Professor Sante de Sanctis, who has written notable treatises upon it. I have taken from his work Gli Infantilismi, the following table of fundamental characteristics necessary to constitute the infantile type.
- Stature and physical development in general below that required by the age of the patient.
- Retarded development or incomplete development of the sexual organs and of their functions.
- Incomplete development of intelligence and character.
In order to recognise infantilism, it is necessary to know the dimensions and morphology of the body in their relation to the various ages, and to bear in mind that in young children sexual development either has not begun or is still incomplete.
Dimensions and Morphology of the Body at the Various Ages.—What we have already learned regarding stature will give us one test in our diagnosis of infantilism: the increase of stature and the transformations of type of stature concur in establishing the dimensions and the morphology of the body (See Stature, Types of Stature, Diagrams).
A sufferer from infantilism will have, for example at the age of eleven, a stature of 113 centimetres and a statural index of 56, while the average figures give:
| Age | Stature | Index |
|---|---|---|
| 7 years | 111 | 56 |
| 8 years | 117 | 55 |
| 9 years | 122 | 55 |
| 10 years | 128 | 54 |
| 11 years | 132 | 53 |
Consequently, in such a case the eleven-year-old patient would have the appearance of a child of seven, not only in stature but also in the relative proportions of his body. (And if we examined him psychically, we should probably find his speech was not yet perfected, that he showed a tendency toward childish games, a mental level corresponding to the age of seven or thereabouts; in school the child would be placed in the first or second elementary grade.)
Accordingly the anthropological verdict of infantilism must not be based upon limits of measurement alone, but also upon the proportions of the body. Every age has its own morphology.
Now, such changes are found not only in the reciprocal relations between the bust and the limbs, but also between the various parts of the bust, as we shall see when we come to an analytical study of the morphology of the head, the thorax and the abdomen; the detailed anthropological examination of the individual patient will furnish us with further accompanying symptoms helpful in establishing a diagnosis. Further on we shall give a summarised table of the morphology of the body from year to year (laws of growth); and of the most notable and fundamental psychological characteristics of the different years of childhood; so that a teacher may easily derive from it at a glance a comprehensive picture that will aid in a diagnosis of the age, and hence of the arrest of development, in subjects suffering from infantilism.
Before entering upon the important question of pathogenesis in its relation to infantilism, I will reproduce a few biographic notes of infantile types, taken from various authorities:
Giulio B. was brought to the clinic because of his continued love for toys, notwithstanding his age. At seventeen and a half he retained the manners, the games and the language of a child of between ten and twelve. In appearance, he gave the impression of being between thirteen and fourteen, and was as well proportioned as a lad of that age. His stature was 1.45 meters (at thirteen the average stature is 1.40 m. and at fourteen it is 1.48 m.; while at seventeen it ought to be 1.67 m.) and his weight was 39 kilograms (at fourteen the weight is 40 k. and at seventeen it is 57 k.). His appearance was lively, intelligent, but on the whole childish. His genital organs were like those of a boy of twelve (Fig. 30). The patient understood all that was said to him, he could read, write and sing, but could not apply himself to any serious occupation; he did not read the papers, but would amuse himself by looking at pictures in illustrated books; he could play draughts, but was equally pleased when playing with children's toys. During his stay at the clinic he was several times punished for childish pranks: he filled his neighbour's chamber vessel with stones, and amused himself by making little paper boats and sailing them in the urine, etc. He was employed as a page at an all-night café; his age permitted him to perform this work forbidden to children, while his appearance rendered him fitted for the task. When questioned discreetly regarding his sexual functions, or rather his sexual incapacity, he understood at once, and expressed in a childish way his deep regret, because he had heard it said that "that was why they wouldn't let him serve in the army."
Vittorio Ch. Is twenty-two years old and looks about eight or ten. Stature 1.15 metres (average stature for the age of seven being 1.11 m.; for eight, 1.17 m.). Has no beard, nor any signs of virility; genital organs like those of a child. His intelligence is alert, but does not surpass that of a boy of ten. He speaks correctly, can read, write and sing; plays draughts, but does not disdain children's toys, and prefers looking at pictures in illustrated books to reading the daily papers. After the death of the patient, it was found, as a result of the autopsy, that the epiphyses of the long bones had not yet united with the diaphyses, and that the bones of the skull were still as soft as those of a child (Fig. 31).
Here is another case, taken from Moige:[30]
It is the case of a young working girl, presenting all the appearance of a child of twelve or fourteen; she had not yet attained puberty, although she was thirty years of age. No external sign gave evidence that she was undergoing the sexual transition that should give her womanhood. Her breasts were reduced to the mere nipple, as in infancy. Her voice was weak. This woman was hysterical and subject to frequent attacks of convulsions. Her mental condition remained infantile. She was gentle, docile, timid and apprehensive; she was destitute of coquetry or sense of shame.
Fig. 30.—Boy, seventeen and one-half years old.
Fig. 31.—Young man, twenty-two years old.
Fig. 32.—Idiotic cretin, age 20 years, stature 1.095 m.
Fig. 33.—An example of myxedematous infantilism.
Fig. 34.—A group of cretins in the valley of Aosta (Piedmont). The alteration of the thyroid gland is of endemic origin.
Renato L.,[31] age twenty-nine; stature 1.30 m. (average stature at the age of ten, 1.28 m.; at eleven, 1.32 m.) weight, 32 kilograms (average weight, age of twelve, 31 k.). It appears from his history that he developed normally up to the age of nine, after which period an arrest of development occurred, both physical and psychic. An arrest of the genital organs dates back also to early childhood. His intelligence is that of a backward child; he has never been able to read or write, but can count up to 1000. He has never been able to learn a trade, but shows some talent for drawing.
His criminal instincts seem to be especially developed. He spends whole hours, turning over the leaves of popular illustrated novels, and whenever he comes across a picture representing a homicide or an assassination, he utters loud exclamations of delight. He has only one passion, tobacco, and only one object of adoration, Ravachol. Very violent, extremely irritable; when he is angry, he would kill someone, if, as he says, "he had the strength for it." Although, as a rule, he docilely obeys the orders given him, it is because he is "afraid of being scolded." His ideal is to be able some time to obtain refuge in the Hospice de Bicêtre.
From De Sanctis's work, Gli Infantilismi, I obtain the following data, that are very suggestive on the anthropological side, regarding a case of infantilism observed by the professor in his asylum-school for defective children, in Rome.
Vincenzo P., seven years of age. Father in good health and of good character. Mother small, thin, weak, underfed; has had nine children, of which five are living, all feeble. Vincenzo was born in due time, birth regular; had five wet-nurses; cut his teeth at the normal intervals; began to walk at the end of the second year and to speak at the end of the first. According to his mother, all went well until the fourth year. At this period, Vincenzo became very troublesome and ceased to "grow taller." Later on he was sent to the communal school, but the director of the school in the Via Ricasoli, seeing how undersized and backward he was, sent him to the Asylum-School for defective children.
In appearance the child is eurhythmic, excepting that the head appears a little too big in proportion to the rest of his body; but it is not of the hydrocephalic type (an infantile characteristic). He is slightly asymmetric, the postero-inferior portion of the right parietal bone being more depressed than that of the left (infantile plagiocephaly).
| Measurements | Age at which the Vincenzo would be normal | |
|---|---|---|
| Of the child | Normal measurements at the age of seven | |
| Stature, 0.870 m. | 1.10 m. | Three years, stature, 0.864 m. |
| Weight, 12.400 kg. | 20.16 kg. | Two years, weight, 12 kg. |
| Circumference of chest, 0.507 m. | 0.55 m. | Four years, circumference of chest, 0.505 m. |
| Vital index, 59 | Vital index, 54 | Two years, vital index, 59. |
The bust is greatly developed in comparison with the lower limbs, which are unquestionably short. (The sitting stature was not taken, but this note, recorded from simple observation, reminds us of the enormous difference between the indices of stature at the age of two or three and at the age of seven: Index at two years=63; at three=62; at seven=56.)
But although we lack the index of stature, we may make use of the vital index, which is given by the proportion between the circumference of the chest and the stature, and consequently gives us an index of the morphology of the bust in its relation to the whole personality; thus we find that the vital index corresponds in the present case to that of a child of two, as is also true of the weight, so that we may deduce that the index of stature was probably about 62-63.
He shows no impairment as to external sensations; on the other hand, internal sensations, such as satiety, illness, etc., are blunted. His power of attention seems sufficient, both at play and in school and when questioned. Neither does his memory show anything abnormal. Emotionally, he is below the normal level; he says that he is afraid of thunder; occasionally he shows annoyance when disturbed; but it is equally certain that he never becomes angry, never turns pale and never blushes, as the result of any excitement. He is of an indifferent disposition and is passive in manner; he is good natured, or rather, a certain degree of apathy makes him appear so.
All things considered, his mental development may be described as that of a three-year-old child; only that he differs from children of that age in his lack of vivacity and in his complete development of articulate speech (it should be noted, in regard to the diagnosis of age made by so distinguished a psychologist as De Sanctis, that he judged the child to have a psychic development corresponding to the age of three years); while we, studying the general measurements of the body, determined that they correspond to three different ages, namely, two, three and four the average of which is precisely three; while the stature, which is the index of development of the body as a whole, corresponds almost exactly to that average of three years (0.870 m., 0.864 m.).
Pathogenesis of Infantilism.—At this point it might be asked: Why do we grow? We hide the mechanism of growth under very vague expressions: biological final causes, ontogenetic evolution, heredity. But, if we stop to think, such expressions are not greatly different from those which they have replaced: the divine purpose, creation.
In other words, a causal explanation is lacking. But positive science refuses to lose itself in the search after final causes, in which case it would become metaphysical philosophy. Nevertheless, it may pursue its investigations into the genesis of phenomena, whenever the results of experiments permit it to advance.
So it is in the case of growth; certain relatively recent discoveries in physiology have made it possible to establish relations between the development of the individual and the functions of certain little glands of "internal secretion." Now, the discovery of these relations is certainly not a causal explanation of the phenomenon of growth, but only a profounder analysis of it.
Hitherto, we have considered the organism in regard to its chief visceral functions: in speaking of macroscelia and of brachyscelia, we considered the different types in relation to the development of the organs of vegetative life and the organs of external relations: the central nervous system, the lungs, the heart, the digestive system. Our next step is to enter upon the study of certain little organs, which were still almost ignored by the anatomy and physiology of yesterday. These organs are glands which, unlike other glands (the salivary glands, the pancreas, the sudoriferous glands, etc.), are lacking in an excretory duct, through which the juices prepared for an immediate physiological purpose might be given forth; and in the absence of such excretory tubes, their product must be distributed through the lymphatic system, and hence imperceptibly conveyed throughout the whole organism.
One of these glands, the one best known, is the thyroid; but there are others, such, for example, as the thymus, situated beneath the sternum, or breast-bone, and much reduced in size in the adult; the pineal gland or hypophysis cerebri, situated at the base of the encephalon; the suprarenal capsules, little ear-shaped organs located above the kidneys. Up to a short time ago, it was not known what the functions of such glands were; some of them were regarded as atavistic survivals, because they are more developed in the lower animals than in man, and consequently were classed with the vermiform appendix as relics of organs which had served their functions in a bygone phylogenetic epoch and remain in man without any function, but on the contrary represent a danger through the local diseases that they may develop. The cerebral hypophysis was in ancient times regarded as the seat of the soul.
These glands are very small; the largest is the thyroid, which weighs between thirty and forty grams (1 to 1-3/5 oz.); the suprarenal glands weigh four grams each (about 60 grains); the hypophysis hardly attains the weight of one gram.
The importance of these glands began to be revealed when antiseptic methods rendered surgery venturesome, and the attempt was made (in 1882) to remove the thyroid gland. After a few weeks the patient operated on began to feel the effects of the absence of an organ necessary to normal life: effects that may be summed up as, extreme general debility; pains in the bones and in the head; an elastic swelling of the entire skin; enfeebled heart action, and anemia; and on the psychic side, loss of memory, taciturnity, melancholy. After the lapse of some time the patient showed such further symptoms as the shedding of the cuticle of the skin, whitening of the hair and facies cretinica.
But when Sick undertook to operate upon the thyroid of a child of ten, the deleterious effects of interrupting the above-mentioned function of the gland manifested itself in an arrest of development; at the age of twenty-eight the patient operated on by Sick was a cretin (idiotic dwarf) 1.27 metres tall (average stature at age of ten=1.28 m.). Since that time certain diseases have been recognised that call to mind the condition of patients who have undergone an operation for removal of the thyroid glands, and in which the subjects have suffered from hypothyroidea, or insufficient development of the thyroid.
Such individuals were characterised by nanism, solid edema of the skin, arrest of psychic development, and absence of development of puberty; this malady has taken its place in medical treatises under the name of myxedema; and, when serious, is accompanied by nanism and myxedematous idiocy. But in mild cases it may result in a simple myxedematous infantilism.
The other glands of internal secretion are also associated with the phenomena of growth. First in importance is the thymus which is found highly developed in the embryo and in the child at birth, and thereafter diminishes in volume, until it almost disappears after the attainment of puberty. In the psychological laboratories of Luciani, at Rome, the first experiments were conducted upon dogs, for the purpose of determining what alterations in growth would result as a consequence of the removal of the thymus. The dogs thus operated on were weak; furthermore they became atrophied, accompanied by roughness of the skin and changes in pigmentation. After this, experiments were made in the Pediatric Clinic at Padua, under the direction of Professor Cervesato, in the application of thymic organotherapy (that is, the use of animal thymus as medicine) with notable success in the case of atrophic children (infantile atrophy occurs in early infancy; this form is known popularly in Italy as the "monkey sickness." Nursing children become extremely thin, cease to grow in length, the little face becomes elongated and skeleton-like, and is frequently covered with a thick down).
Stoppato also obtained analogous results in infantile atrophy and anemia. Hence it is evident that the very rapid growth in the embryo is associated with the functional action of the thymus. And this is also true of the very rapid growth during the first years of a child's life.
The pituitary gland, or cerebral hypophysis, has also functions associated with the general nervous tone and trophism (or nourishment) of the tissues, and especially of the osseous system. There is a disease known as acromegalia (Marie's disease) which is characterised by an abnormal and inharmonic growth of the skeleton, especially in the limbs and the jaw; the hands and feet become enormously enlarged, while the jaw lengthens and thickens (an unhealthy formation on which the common people of Italy have bestowed the name of "horse sickness," because of the appearance assumed by the face). Such patients complain of general and progressive debility of their psychic activities. In such cases, an autopsy shows an alteration of the pituitary gland, often due to malignant tumors (sarcoma).
The suprarenal capsules also bear a relation to general trophism and particularly to the pigmentation of the skin. It was already noted by Cassan and Meckel that the negro races show a greater volumetric development of the suprarenal capsules; when in 1885 Addison for the first time discovered a form of disease associated with alterations of the suprarenal capsules, characterised by an intensely brown colouration of the skin (bronzed-skin disease), general debility of the nervous and muscular systems, progressive anemia and mental torpor; the malady ends in death. In the case of animals operated on for physiological experiments, not one of them has been able to survive.
Some interesting observations have been made by Zander on the connection between the development of the nervous system and the suprarenal glands. He found that there was an insufficient development of these glands in individuals having teratological (monstrous) mis-shapements of the brain, as in the case of hemicephalus (absence of one-half the brain), cyclops, etc.
There exists between all the ductless glands, or those of internal secretion, an organic sympathy: in other words, if one of them is injured the others react, frequently to the extent of assuming a vicarious (compensating) functional action.
What their functional mechanism is, that is, whether the secretions act as formative stimulants or enzymes, ferments of growth, or whether as antitoxins to the toxins elaborated by various organs in the process of regression, is a question still controverted and in any case cannot enter within the limits of our field.
It is enough for us to know that the general growth of the organism and its morphological harmony, depend not only as regards the skeleton, but equally in relation to the cutaneous system and its pigmentation, the development of the muscles, the heart, the blood, the brain, and the trophic functions of the nervous system, upon some formative and protective action of all these little glands of "internal secretion," with which are associated the psychic activities and even the life itself of each individual, as though within the embryonic crucible there must have been certain substances that acted by stimulating the genetic forces and directing the trophism of the tissues toward a predetermined morphology.
To-day it is held that even the mother's milk contains these formative principles, or enzymes, suited to stimulate the tissues of her own child in the course of their formation; consequently, it produces results which no other milk in all nature can replace.
Alterations in these glands of "internal secretion" may therefore produce an arrest of development—and, in mild cases, forms of infantilism. But the gland which in this connection is of first importance is the thyroid.
Now there is one form of arrest of the trophic rhythm of growth which may be due to hereditary causes effecting the formative glands (myxedematous infantilism), or to exceptional causes occurring in the individual himself in the course of formation, either at the moment of conception, or at some later moment, as may happen even during the period of infancy (dystrophic infantilism of various origin).
In all these cases, however, according to Hertoghe, the exceptional causes, deleterious to growth, would first of all exercise their influence upon the glands of internal secretion and especially upon the thyroid.
In order to make clear, in connection with such complex pathological problems, the cases which are important from the point of view of pedagogy and the school, let us divide them into:
Myxedematous infantilism, due to congenital insufficiency of the thyroid gland from hereditary causes, and
Dystrophic infantilism, associated with various causes deleterious to individual development—and acting secondarily upon the glands of internal secretion (syphilis, tuberculosis, alcoholism, malaria, pellagra, etc.).
Myxedematous infantilism is characterised by short stature, by excessive development of the adipose system, and by arrest of mental development (including speech). Such infantiles very frequently have a special morphology of the face, that suggests the mongol type, and characteristic malformations of the hands (little fingers atrophied). When treated with extracts of the thyroid glands of animals, they improve notably; they become thinner, they gain in stature, their mentality develops to the extent of permitting them to study and to work. Certain mongoloids treated by De Sanctis in the Asylum-School at Rome were improved to the point of being able to attend the high-school and therefore were restored to their family and to society as useful individuals—all of which are facts that are of singular importance to us as educators! Medical care working hand in hand with pedagogy may save from parasitism individual human beings who otherwise would be lost. We ought to be convinced from such evidence of the necessity of special schools for deficients, wholly separated from the elementary schools, and where medical care combined with a specially adapted pedagogic treatment may transform the school into a true "home of health and education." The plan of a "school with a prolonged schedule of hours," including two meals and a medical office, as was conceived and organised by Prof. Sante de Sanctis in Rome, has been proved to answer admirably to this social need; because without wholly removing the children from their families, and therefore without exposing them to the disadvantages of a boarding school, it provides them with all the assistance necessary to their special needs.
Dystrophic Infantilism.—Given a case of infantilism, discoverable by the teacher through the general measurements of the body and psychic examination, it is interesting to investigate the deleterious causes.
It may be the result of poisoning, as for example from alcohol. Alcohol has such a direct influence upon the arrest of development that in England jockeys are produced by making the lads drink a great deal of alcohol. Children who drink alcohol do not grow in stature, and similarly the embryo grows in a less degree when the mother indulges in alcohol during pregnancy; some Swiss women deliberately resort to this means, in order that a smaller child may lessen the pain of childbirth. But alcohol not only diminishes the stature, but destroys the harmony of the different parts; that is, in the development of the body it arrests both the volumetric and the morphological growth. Furthermore, alcohol produces in children an arrest of mental development. An acquaintance with this principle of hygiene should be looked upon by the teacher less as a piece of special knowledge than as a social duty. From the point of view of the educator, the fight against alcoholism should have no assignable limits! It would be vain for him to perfect his didactic methods in order to educate a child that drank wine or other still worse alcoholic liquors. It would be better if the efforts which he meant to dedicate to such educative work could be all turned to a propaganda directed toward the parents of such children, or toward the children themselves, to induce them to abstain from so pernicious a habit!
We may also consider in the category of poisonings certain chronic maladies which act upon the organism with special toxic (poisonous) effects. In the foremost rank of such maladies belongs
Syphilis.—This disease is ranked among the principal causes of abortion; in other words, the fœtus which results from a syphilitic conception lacks vitality, and often fails to complete the cycle of intrauterine life. But even granting that the fœtus survives and attains its complete development, the child after birth grows tardily, and very often remains an infantile. It is well known that syphilis has been transmitted to new-born infants at the time of birth, in consequence of which these infants may in turn transmit syphilis to their wet-nurses. In such cases they are really sick and need medical treatment from the hour of their birth. Just as in the adult patient, syphilis has several successive stages, an acute primary stage, with plain manifestations of hard ulcers, erythema diffused over the skin of the entire body, glandular infiltrations, etc., and then secondary and tertiary manifestations that eventually become chronic and exhibit almost imperceptible symptoms; so in the case of children, syphilis may be transmitted in various degrees of virulence. In the acute stage the result will be abortion or the child will be still-born, or else the new-born child will plainly exhibit ulcerations and erythema, but at other periods of the disease, the child may bear far less evident signs of its affliction, as for instance a special form of corrosion in the enamel of its teeth; the cervical pleiades or enlargement of certain little lymphatic glands like the beads of a rosary, distinguishable by touch in the posterior region of the neck; certain cranial malformations (prominent nodules on the parietal bones, Parrot's nodes); and in the child's whole personality an under-development in respect to its age. In cases like these the teacher's observations may be of real social value, because the child has shown no symptoms of such a nature as to cause the parents to have recourse to a physician, and it is the child's scholarship (using the word in the broad sense of the way in which the child reacts in the environment of school, the profit he derives from study, etc.) that may reveal an abnormal development to an intelligent teacher.
The first indication is a stature below what is normal at a given age. Such observations ought to be obligatory upon teachers who are in sympathy with the new ideas, for they alone can be the arbiters of the rising generations. It is being said on all sides, to be sure, with optimistic assurance that argues a deficiency of critical insight and common sense, that an adequate education of the mothers ought to enlighten all women in regard to the laws of growth in children and the abnormalities that are remediable. But of what class of mothers are we supposed to be speaking? Certainly not of the great mass of working women and illiterates! certainly not of the women who have been constrained to hard toil from childhood up, and later on condemned to abortion because of such unjust labor, while their spirit is brutalized and their memory loses even the last lingering notion of an alphabet! It will always be easier and more practical, in every way, to enlighten twenty-five thousand teachers regarding these principles than to enlighten many millions of mothers; not to mention that if we wished to enlighten these mothers in a practical way regarding the principles of the hygiene of generation, we should still have to invoke the services of that very class whose assigned task in society is precisely that of educating the masses!
The teacher can and should learn at least how to suspect the presence of hereditary syphilis in his pupils, in order to be able to invoke the aid of the physician, leaving to the latter the completion of the task, namely, the eventual cure. It is well known that iodide of potassium and its substitutes, especially if used at an early stage, can cure syphilitic children and therefore save innocent boys and girls from eventual definite arrest of development and from all the resultant human and social misery.
Another cause that is deleterious to development is
Tuberculosis.—Although it has now been demonstrated that tuberculosis is not hereditary, as an active disease—that is, we cannot inherit in our organism localised colonies of the tuberculosis bacillus, because the bacilli cannot pass through the placenta into the fœtus during the period of gestation—nevertheless a predisposition to infection from the bacillus can be inherited.
A predisposition which consists in a special form of weakened resistance of the tissues, rendering them incapable of immunity, and a skeletal formation which is distinguished by a narrowness of the chest, and a consequent smallness of lungs, which, being unable to take in sufficient air, constitute a locus minoris resistentiæ (locality of less resistance) to localisation of the bacilli. Now, since our environment is highly infected by the bacilli of tuberculosis, we must all necessarily meet with it, we must all have repeatedly received into our mouths and air passages Koch's bacilli, alive and virulent; and yet the strong organism remains immune, while the weak succumbs. Consequently those who are predisposed by heredity are almost fated to become tuberculous, and in this sense the malady presents the appearance of being truly hereditary. But such organic weakness in a child predisposed to tuberculosis is manifested not only by possible attacks of various forms of the disease localised in the glands (scrofula) or the bones, but also by a delayed development of the whole personality.
Now, the environment of school and the educative methods still in vogue in our schools, not only are not adapted to correct such a predisposition, but what is more, the school itself creates this predisposition! In fact, the sitting posture—or rather, that of stooping over the desk, to write—and the prolonged confinement in a closed environment, impede the normal development of the thorax and of all the physical powers in general. Many a work on pedagogic anthropology has already shown that the most studious scholars, the prize-winners, etc., have a wretched chest measure, and a muscular force so low as to threaten ruin to their constitutions.
Consequently, children who are predisposed to tuberculosis ought unquestionably to be removed from our schools and cared for and educated in favourable environments. While we are still impotent in the face of fatalities due to this deplorable disease, we are not ignorant of the means needed to save a predisposed child and transform him into a robust and resistant lad. Such knowledge, to be sure, was applied to mankind only as a second thought; for the first men to apply and then to teach such means of defence were the owners of cattle and the veterinaries. The owners of cattle discovered that if a calf was born of a tuberculous cow, it could be saved and become an excellent head of cattle, if only it was subjected to a very simple procedure; the calf must be removed from its mother and given over to be nursed by another cow in the open country; and it must remain in the open pastures for some time after it its weaned.
By taking similar precautions in the case of children, it has been shown that the son of a tuberculous woman, if entrusted to a wet-nurse in the open country, and brought up on an abundance of nourishing food until his sixth year in the freedom of the fields, can be made as robust as any naturally sound child. From this we get the principle of schools in the open air, or of schools in the woods, or on the sea-shore, for the benefit of weak, anemic children, predisposed to tuberculosis. Such a sojourn constitutes the "School-Sanatorium," the lack of which is so grievously felt by the parents of feeble children, and that might so easily be instituted in our mild and luxuriant peninsula, so rich in hillsides and sea-coast!
Malaria.—One of the chief causes of mortality and of biological pauperism in many regions of Italy is malaria. This scourge rages even to the very gates of Rome. The country folk of these abandoned tracts pine away in misery and at the same time in illiteracy, while their blood is impoverished by disease, and a notable percentage of the children are victims of arrested development.
These unfortunates, forgotten by civilisation, are destined to roam the fields, bearing with them, till the day of their death, a deceptive appearance of youth, and an infantile incapacity for work, an object-lesson of misery and barbarity! Among the means of fighting malaria, the spread of civilisation and the school ought to find a place. Even the quinine given freely by the government is distributed with difficulty among these unhappy people, brutalised by hunger and fever; and some message from civilisation ought to precede the remedy for the material ill. A far-sighted institution is that of Sunday classes founded by Signor Celli and his wife in the abandoned malarial districts. In these classes, the teachers from elementary schools give lessons every Sunday, spreading the principles of civic life, at the same time that they distribute quinine to the children.
If we stop to think that wherever malaria is beaten back, it means a direct conquest of fertile lands and of robust men, and hence of wealth, we must realise at once the immense importance of this sort of school and this sort of struggle, which may be compared to the ancient wars of conquest, when new territories and strong men constituted the prize of battles won, and the grandeur of the victorious nations.
Pellagra.—Pellagra is still another scourge diffused over many regions of Italy. It is well known that this disease, whose pathological etiology is still obscure, has some connection with a diet of mouldy grain. Pellagra runs a slow course, beginning almost unnoticed in the first year, with a simple cutaneous eruption, which the peasants sometimes attribute to the sun. The second year disturbances of the stomach and intestines begin, aggravated by a diet of spoiled corn; but it is usually not until the third year that pellagra reveals itself through its symptoms of great nervous derangements, with depression of muscular, psychic and sexual powers, together with melancholia, amounting to a true and special form of psychosis (insanity) leading to homicide, even of those nearest and dearest (mothers murdering their children) and to suicide.
This established cycle of the disease is not invariable. Instead of representing successive stages, these symptoms may often be regarded merely as representing the prevailing phenomena in various forms of pellagra; in any case, it constitutes a malady that runs a slow course during which the same patient is liable to many relapses. While the malady is running its course, the patients may continue their usual physiological and social life, and even reproduce themselves. So that it is not an infrequent case when we find mothers, suffering from pellagra, nursing an offspring generated in sickness and condemned to manifold forms of arrested development, both physical and mental.
Against a disease so terrible that it strikes the individual and the species, it is now a matter of common knowledge that there is an exceedingly simple remedy: it consists in a strongly nitrogenous diet (i.e. meat) and that, too, only temporarily. In fact, in the districts where the pellagra rages, various charitable organisations have been established, among others the economic kitchens for mothers, which by distributing big rations of meat effect a cure, within a few months, not only of the sick mothers but of their children as well.
The real battle against pellagra must be won through agrarian reforms: but in the meantime the local authorities could in no small degree aid the unhappy population with their counsel, by enlightening the peasants regarding the risks they run, as well as by informing them of the various forms of organised aid actually established in the neighbourhood and often unknown to the public or feared by them, because of the ignorance and prejudice with which they are profoundly imbued!
Pauperism, Denutrition, Hypertrophy.—We may define all the causes hitherto considered that are deleterious to growth, as toxical dystrophies, since not only alcohol, but the several diseases above discussed—syphilis, tuberculosis, malaria, pellagra—produce forms of chronic intoxication. But besides all these various forms of dystrophies, we may also cite cases of infantilism due purely to defective nutrition, and family poverty. Physiological misery may produce an arrest of growth in children.
But just as denutrition associated with pauperism (social misery, economic poverty, lack of nourishment) may cause an organism in course of development to arrest its processes of evolution through lack of material, the same result is equally apt to be produced by any one of a great variety of causes liable to produce organic denutrition, physiological poverty.
For example, too frequent pregnancies of the child's mother, which have resulted in impoverishing the maternal organism, causing deficiency of milk, etc.
Infant Illnesses.—In the same way, organic impoverishment is caused by certain maladies of the digestive system which impede the normal assimilation of nutritive matter: dysentery, for instance; and the effects may be still more disastrous if symptoms of this kind are accompanied by feverish conditions, as in typhus.
There are cases, however, in which the arrest of development is not to be attributed to some wasting disease, or to the denutrition resulting from it; but rather to some acute illness occurring in early childhood (pneumonia, etc.), after which the child ceased to progress in accordance with his former obviously normal development.
Anangioplastic Infantilism.—Another form of infantilism is associated with a malformation of the heart and blood-vessels, that is to say, the heart and aorta together with the entire circulatory system are of small dimensions; the calibre of the arteries is less than normal. In such a case the restriction of the entire vascular system and the scantiness of circulation of the blood constitute an impediment to the normal growth of the organism. Although in such cases the explanation of the cause of the phenomenon is purely mechanical, nevertheless such abnormality of the heart and veins is to be classed as a teratological (monstrous) malformation, determined by original anomalies of the ductless glands, similar to what is found in cases of cephalic and cerebral monstrosities.
In this form of infantilism the patient shows not only the usual fundamental characteristics already noted, but also symptoms of anemia as obstinate to all methods of treatment as chlorosis is; in addition to which they often show congenital malformations of the heart, in every way similar in their effects to valvular affections such as may result from pathological causes (chief of which are mitral and aortic stenosis, which consist of a stricture of the valves connected with the left ventricle of the heart).
Accordingly, children who show forms of mitral infantilism are inferior to their actual age not only in their whole psychosomatic appearance, but they are noticeably weak, pale and suffering from shortness of breath and disturbances of the circulation. In such cases, neither pedagogy nor hygiene can counteract the arrest of development; but it is well that the attention of teachers should be called to such cases, in order that cruel errors may be prevented, which would unconsciously do additional harm to individuals already burdened by nature with physiological wretchedness.
In conclusion: The normal growth of the organism is associated with the functional action of certain glands known as glands "of internal secretion," such as the thymus and thyroid, first of all, as well as the suprarenal capsules and the cerebral hypophysis.
This group of formative glands presides not only over the entire growth of the body, but also over the intimate modeling of its structure; so that a lesion or deficiency in any of them results not only in nanism and an arrest of mental development, but in various forms of general dystrophy.
That the organism is associated in the course of its transformations with the functional action of specific glands is shown by the development of puberty, which consists in a series of transformations of the entire organism, but is associated with the establishment of functional activity of glands that were hitherto immature: the genital glands (ovaries, testicles). These glands also are functionally in close sympathy with the entire group of formative glands: so much so that, if the glands of internal secretion are injured, the genital glands usually fail to attain normal development (infantilism). Now, the transformations which take place in the organism at the period of puberty might be produced at other periods if the functional action of the generative glands should show itself at a different epoch. That is, these transformations are not associated with the age of the organism, but with the development of specific glands. There are cases of the genital glands maturing at abnormal ages; or of local maladies that have hastened the appearance of the phenomena of puberty in children of tender years. A notable case is that described by Dr. Sacchi,[32] of a nine-year old boy, who had grown normally up to the age of five and a half, both in his physiological organism and in his psychic personality. At the age of five and a half, the child's father noticed a physical and moral alteration; the child's voice grew deeper, his character more serious, and the skeletal and muscular systems grew rapidly, while on certain portions of the body, as for example on the face, a fine down appeared. At the age of seven the child had attained a stature that was gigantic for his age; he was very diligent and studious and did not care to play with his comrades. At nine, he had a stature of 1.45 metres (the normal stature being 1.22), a weight of 44 kilograms (normal = 24); his muscles were highly developed, his powers of traction and compression being equal to those of a man; his chin was covered with a thick beard five centimetres long. When he was examined by a physician, the latter discovered a tumor in the left testicle. After an operation, the child lost his beard and regained his childish voice; his character became more timid and sensitive; he began once more to enjoy his comrades and take part in boyish games. His muscular force underwent a notable diminution.
Rickets.—It is important not to confound any of the various forms of infantilism with rickets. Rickets is a well-defined malady whose special point of attack is the osseous system in course of formation; but it leaves the nervous system and the genital system unimpaired. The sufferer from rickets may be a person of intelligence, capable of attaining the highest distinctions in art or in politics; he is normal in his genital powers, so that he is capable of normal reproduction, without, in many cases, transmitting any taint of rickets to his descendants.
Nevertheless this disease, like all constitutional maladies, occurs only in individuals who are weakly.
Among the characteristics of rickets, the one which assumes first importance is inferiority of stature in comparison with the normal man. In this connection I quote the following figures from Bonnifay:[33]
| Age | Stature in centimetres | |
|---|---|---|
| Rachitic children | Normal children | |
| 11 months | 66.5 | 69.4 |
| 2 years | 70.7 | 74.8 |
| 2-3 years | 75.8 | 83.0 |
| 3-4 years | 76.8 | 91.9 |
| 5-6 years | 91-93 | 101.25 |
| 6-7 years | 105.0 | 106.8 |
| 7-8 years | 110.6 | 115.3 |
| 8-9 years | 118.4 | 119.0 |
| 9-10 years | 121.6 | 124.4 |
But together with diminution of stature there exist in rickets various deformities of the skeleton, especially in the bones of the cranium, in the vertebral column and in the frame of the thorax; although even the pelvis and the limbs have been known to show the characteristic deformities.
An objective knowledge of the first symptoms of rickets ought to be regarded as indispensable on the part of mistresses in children's asylums, and in any case to form an important chapter in pedagogic anthropology. For it is well known that in the early stages of rickets the child may be so guided in its growth as to save it from deformities of the skeleton, even though a definite limitation of the stature may not be prevented.
That is to say, that through the intervention of hygiene and pedagogy the rachitic child may be saved from becoming a cripple or a hunchback, and will simply remain an individual of low stature; with certain signs and proportions of the skeleton indicative of the attack through which he has passed. Even in very severe cases it is at least possible to minimize the deformity of the thorax and the curvature of the vertebral column.
The precursory signs of rickets in a child are: a characteristic muscular weakness, frequently accompanied by excessive development of adipose tissue, giving an illusory impression of abundant nutrition; delay in the development of the teeth and in locomotion, which from the very beginning may be accompanied by curvature of the long bones of the legs. The bregmatic fontanelle of the cranium closes later than at the normal period, and is larger than in normal cases, just as the entire cerebral cranium is abnormally developed in volume, while the facial portion remains small, especially in regard to the jaw bones.
One of the most salient characteristics, however, is the peculiar enlargement of the articular heads of the long bones, easily recognizable in the size of the wrists; the enlargement is also found in the extremities of the ribs, which at their points of union on each side of the sternum form a succession of little lumps, like the beads of a rosary. In conjunction with these characteristics, it is to be noted, at all ages, as appears from the figures given by Bonnifay, that there is a notable diminution of stature.
The treatment of rickets is medical and pedagogical combined. Children of this type should be removed from the public school, where the school routine might have a fatally aggravating effect upon the pathological condition of such children. In fact, gymnastics based upon marching and exercising in an erect position, together with a prolonged sitting posture, are likely to produce weaknesses of the skeleton and deformities, even where there are no symptoms of rickets!
The establishment of infant asylums for rachitic children is one of the most enlightened movements of the modern school. We Italians are certainly not the last to found such institutions, and Padua possesses one of the oldest and most perfect asylums of this sort of which Europe can boast. Asylums for rachitic children ought to have a special school equipment, so far as concerns the benches and the apparatus for medical and orthopedic gymnastics; furthermore they should be provided with a pharmaceutical stock of remedies suited to building up the osseous system and the organism in general; and a school refectory should be provided, adapted to the condition of the children. The methods of instruction should rigorously avoid any form of fatigue, and instead provide the child with psychic stimuli designed to overcome a sluggishness due to the mental prostration to which he is for the most part subject. As regards their situation, these asylums for rachitic children may be advantageously located upon the sea-coast.
The Stature of Abnormals.—The name of abnormals is applied to the entire series of individuals who are not normal: hence the categories already considered (infantilism, gigantism, rachitis) are included by implication. The group of abnormals, however, includes besides a long series of other classes, neuropathics, epileptics, and degenerates.
Under the head of abnormals may also be included those who are abnormal in character, such as criminals, etc. It is not irrational to group together the different types of abnormals, for the purpose of anthropological research, in contrast with those who are normal. In America, for instance, such studies are conducted on a large scale, precisely for the purpose of showing the deviation of abnormal dimensions of the body from normal dimensions, not only in the definitive development of the body, but also during growth. The abnormals depart from the mean measurements, now rising above and again falling below, as though they were intermittently impelled by the biological impulse of their organism, which at one time manifests a hypergenesis and at another a hypogenesis. A clear illustration of these facts is afforded by MacDonald's diagram (see page (168)): the solid line which rises regularly represents the growth in stature of normal individuals; the dotted line which forms a zig-zag, now rising rapidly above the normal line and then falling very much below it, represents the growth in stature of the abnormals. Naturally such a chart must be interpreted by comparison with the standards of mean measurements gathered at successive ages from a large number of different children. It shows that normal children are nearly uniform among themselves, and in relation to the years of their growth: while abnormal children differ greatly one from another and do not accord with the mean stature of the age they represent.
Regarding the stature of criminals there can be nothing special to say: criminals do not represent an anthropological entity. They belong to a large extent, whenever the criminal act has a psychophysiological basis, to various categories of abnormals. From the victim of rickets to the infantile, to the submicrocephalic, to the ultra-macroscele or ultra-brachyscele, all abnormal organisms may contribute to the number of those predisposed to the social phenomenon of criminality. And it is for this reason that we may say in general that the stature of abnormals is sometimes above and sometimes below the normal, but with a prevailing tendency to fall below.
Moral and Pedagogic Considerations.—The objection may be raised that a medico-pedagogic system of treatment, designed to prevent a threatened arrest of development or to minimise its progressive symptoms, demands on the part of society an excessive effort, out of proportion to the end in view. To cure or ameliorate the condition of the weak may even be regarded as a principle of social ethics that is contrary to nature, whose laws lead inexorably to the selection of the strong and to the elimination of all those who are unfitted for the struggle for life. Sparta has furnished us with a practical example that is very far from the principles which scientific pedagogy is to-day seeking to formulate as a new necessity of social progress.